These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 33268198)

  • 1. Recycling lithium cobalt oxide from its spent batteries: An electrochemical approach combining extraction and synthesis.
    Wang J; Lv J; Zhang M; Tang M; Lu Q; Qin Y; Lu Y; Yu B
    J Hazard Mater; 2021 Mar; 405():124211. PubMed ID: 33268198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recovery of LiCoO
    Feng J; Zhang B; Du P; Yuan Y; Li M; Chen X; Guo Y; Xie H; Yin H
    iScience; 2023 Nov; 26(11):108097. PubMed ID: 37876797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organics removal combined with in situ thermal-reduction for enhancing the liberation and metallurgy efficiency of LiCoO
    Zhang G; Yuan X; He Y; Wang H; Xie W; Zhang T
    Waste Manag; 2020 Sep; 115():113-120. PubMed ID: 32736031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Innovative leaching of cobalt and lithium from spent lithium-ion batteries and simultaneous dechlorination of polyvinyl chloride in subcritical water.
    Liu K; Zhang FS
    J Hazard Mater; 2016 Oct; 316():19-25. PubMed ID: 27209515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A closed-loop process to recover Li and Co compounds and to resynthesize LiCoO
    Dos Santos CS; Alves JC; da Silva SP; Evangelista Sita L; da Silva PRC; de Almeida LC; Scarminio J
    J Hazard Mater; 2019 Jan; 362():458-466. PubMed ID: 30265977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrometallurgical recovery of spent cobalt-based lithium-ion battery cathodes using ethanol as the reducing agent.
    Zhao J; Zhang B; Xie H; Qu J; Qu X; Xing P; Yin H
    Environ Res; 2020 Feb; 181():108803. PubMed ID: 31761334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recycling Valuable Metals from Spent Lithium-Ion Batteries Using Carbothermal Shock Method.
    Zhu XH; Li YJ; Gong MQ; Mo R; Luo SY; Yan X; Yang S
    Angew Chem Int Ed Engl; 2023 Apr; 62(15):e202300074. PubMed ID: 36781386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-Process Regeneration of Highly Stable Spherical LiCoO
    He J; Cao Y; Wang X; Zhao C; Huang J; Long W; Zhou Z; Dong P; Zhang Y; Wang D; Duan J
    Chemistry; 2024 Mar; 30(13):e202303424. PubMed ID: 38116816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recycling of spent lithium-ion battery with polyvinyl chloride by mechanochemical process.
    Wang MM; Zhang CC; Zhang FS
    Waste Manag; 2017 Sep; 67():232-239. PubMed ID: 28502601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recycling of LiCoO
    Zhou S; Zhang Y; Meng Q; Dong P; Fei Z; Li Q
    J Environ Manage; 2021 Jan; 277():111426. PubMed ID: 33032002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct recovery of degraded LiCoO
    Yang H; Deng B; Jing X; Li W; Wang D
    Waste Manag; 2021 Jun; 129():85-94. PubMed ID: 34044320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching.
    Li L; Bian Y; Zhang X; Guan Y; Fan E; Wu F; Chen R
    Waste Manag; 2018 Jan; 71():362-371. PubMed ID: 29110940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly efficient re-cycle/generation of LiCoO
    Qiu X; Hu J; Tian Y; Deng W; Yang Y; Silvester DS; Zou G; Hou H; Sun W; Hu Y; Ji X
    J Hazard Mater; 2021 Aug; 416():126114. PubMed ID: 34492910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microwave hydrothermal renovating and reassembling spent lithium cobalt oxide for lithium-ion battery.
    Liu Y; Yu H; Wang Y; Tang D; Qiu W; Li W; Li J
    Waste Manag; 2022 Apr; 143():186-194. PubMed ID: 35272201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complete Metal Recycling from Lithium-Ion Batteries Enabled by Hydrogen Evolution Catalyst Reconstruction.
    Zhang Y; Li J; Zhao W; Yan T; Zhang L; Zhang W; Mei D; Yu J
    J Am Chem Soc; 2023 Dec; 145(50):27740-27747. PubMed ID: 38059924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement in leaching process of lithium and cobalt from spent lithium-ion batteries using benzenesulfonic acid system.
    Fu Y; He Y; Qu L; Feng Y; Li J; Liu J; Zhang G; Xie W
    Waste Manag; 2019 Apr; 88():191-199. PubMed ID: 31079631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling regeneration strategy of lithium-ion electrode materials turned with naphthalenedisulfonic acid.
    Qiu X; Tian Y; Deng W; Li F; Hu J; Deng W; Chen J; Zou G; Hou H; Yang Y; Sun W; Hu Y; Ji X
    Waste Manag; 2021 Dec; 136():1-10. PubMed ID: 34627101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid.
    Zeng X; Li J; Shen B
    J Hazard Mater; 2015 Sep; 295():112-8. PubMed ID: 25897692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unveiling the Role and Mechanism of Mechanochemical Activation on Lithium Cobalt Oxide Powders from Spent Lithium-Ion Batteries.
    Wang M; Tan Q; Li J
    Environ Sci Technol; 2018 Nov; 52(22):13136-13143. PubMed ID: 30207705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery and regeneration of LiCoO
    Tang Y; Xie H; Zhang B; Chen X; Zhao Z; Qu J; Xing P; Yin H
    Waste Manag; 2019 Sep; 97():140-148. PubMed ID: 31447021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.