BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 33268370)

  • 1. Breaking medical data sharing boundaries by using synthesized radiographs.
    Han T; Nebelung S; Haarburger C; Horst N; Reinartz S; Merhof D; Kiessling F; Schulz V; Truhn D
    Sci Adv; 2020 Dec; 6(49):. PubMed ID: 33268370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Challenges in Implementing the Local Node Infrastructure for a National Federated Machine Learning Network in Radiology.
    Jacobs PP; Ehrengut C; Bucher AM; Penzkofer T; Lukas M; Kleesiek J; Denecke T
    Healthcare (Basel); 2023 Aug; 11(17):. PubMed ID: 37685411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Chest Radiograph Interpretations by Artificial Intelligence Algorithm vs Radiology Residents.
    Wu JT; Wong KCL; Gur Y; Ansari N; Karargyris A; Sharma A; Morris M; Saboury B; Ahmad H; Boyko O; Syed A; Jadhav A; Wang H; Pillai A; Kashyap S; Moradi M; Syeda-Mahmood T
    JAMA Netw Open; 2020 Oct; 3(10):e2022779. PubMed ID: 33034642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of federated learning variations for COVID-19 diagnosis using chest radiographs from 42 US and European hospitals.
    Peng L; Luo G; Walker A; Zaiman Z; Jones EK; Gupta H; Kersten K; Burns JL; Harle CA; Magoc T; Shickel B; Steenburg SD; Loftus T; Melton GB; Gichoya JW; Sun J; Tignanelli CJ
    J Am Med Inform Assoc; 2022 Dec; 30(1):54-63. PubMed ID: 36214629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SplitAVG: A Heterogeneity-Aware Federated Deep Learning Method for Medical Imaging.
    Zhang M; Qu L; Singh P; Kalpathy-Cramer J; Rubin DL
    IEEE J Biomed Health Inform; 2022 Sep; 26(9):4635-4644. PubMed ID: 35749336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the objectivity, reliability, and validity of deep learning enabled bioimage analyses.
    Segebarth D; Griebel M; Stein N; von Collenberg CR; Martin C; Fiedler D; Comeras LB; Sah A; Schoeffler V; Lüffe T; Dürr A; Gupta R; Sasi M; Lillesaar C; Lange MD; Tasan RO; Singewald N; Pape HC; Flath CM; Blum R
    Elife; 2020 Oct; 9():. PubMed ID: 33074102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Creating High Fidelity Synthetic Pelvis Radiographs Using Generative Adversarial Networks: Unlocking the Potential of Deep Learning Models Without Patient Privacy Concerns.
    Khosravi B; Rouzrokh P; Mickley JP; Faghani S; Larson AN; Garner HW; Howe BM; Erickson BJ; Taunton MJ; Wyles CC
    J Arthroplasty; 2023 Oct; 38(10):2037-2043.e1. PubMed ID: 36535448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Demonstrating the successful application of synthetic learning in spine surgery for training multi-center models with increased patient privacy.
    Schonfeld E; Veeravagu A
    Sci Rep; 2023 Aug; 13(1):12481. PubMed ID: 37528216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multicenter random forest model for effective prognosis prediction in collaborative clinical research network.
    Li J; Tian Y; Zhu Y; Zhou T; Li J; Ding K; Li J
    Artif Intell Med; 2020 Mar; 103():101814. PubMed ID: 32143809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-site fMRI analysis using privacy-preserving federated learning and domain adaptation: ABIDE results.
    Li X; Gu Y; Dvornek N; Staib LH; Ventola P; Duncan JS
    Med Image Anal; 2020 Oct; 65():101765. PubMed ID: 32679533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of Deep Generative Models for High-Resolution Synthetic Retinal Image Generation of Age-Related Macular Degeneration.
    Burlina PM; Joshi N; Pacheco KD; Liu TYA; Bressler NM
    JAMA Ophthalmol; 2019 Mar; 137(3):258-264. PubMed ID: 30629091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aggregating intrinsic information to enhance BCI performance through federated learning.
    Liu R; Chen Y; Li A; Ding Y; Yu H; Guan C
    Neural Netw; 2024 Apr; 172():106100. PubMed ID: 38232427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain tumor segmentation using synthetic MR images - A comparison of GANs and diffusion models.
    Usman Akbar M; Larsson M; Blystad I; Eklund A
    Sci Data; 2024 Feb; 11(1):259. PubMed ID: 38424097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SinGAN-Seg: Synthetic training data generation for medical image segmentation.
    Thambawita V; Salehi P; Sheshkal SA; Hicks SA; Hammer HL; Parasa S; Lange T; Halvorsen P; Riegler MA
    PLoS One; 2022; 17(5):e0267976. PubMed ID: 35500005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of Generative Adversarial Networks for High-Resolution Synthetic Image Generation of Circumpapillary Optical Coherence Tomography Images for Glaucoma.
    Sreejith Kumar AJ; Chong RS; Crowston JG; Chua J; Bujor I; Husain R; Vithana EN; Girard MJA; Ting DSW; Cheng CY; Aung T; Popa-Cherecheanu A; Schmetterer L; Wong D
    JAMA Ophthalmol; 2022 Oct; 140(10):974-981. PubMed ID: 36048435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Generative Adversarial Network to Synthesize 3D Magnetohydrodynamic Distortions for Electrocardiogram Analyses Applied to Cardiac Magnetic Resonance Imaging.
    Mehri M; Calmon G; Odille F; Oster J; Lalande A
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facing small and biased data dilemma in drug discovery with enhanced federated learning approaches.
    Xiong Z; Cheng Z; Lin X; Xu C; Liu X; Wang D; Luo X; Zhang Y; Jiang H; Qiao N; Zheng M
    Sci China Life Sci; 2022 Mar; 65(3):529-539. PubMed ID: 34319533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Label-Efficient Self-Supervised Federated Learning for Tackling Data Heterogeneity in Medical Imaging.
    Yan R; Qu L; Wei Q; Huang SC; Shen L; Rubin DL; Xing L; Zhou Y
    IEEE Trans Med Imaging; 2023 Jul; 42(7):1932-1943. PubMed ID: 37018314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling.
    Mutasa S; Chang PD; Ruzal-Shapiro C; Ayyala R
    J Digit Imaging; 2018 Aug; 31(4):513-519. PubMed ID: 29404850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.