BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 33268495)

  • 1. Transforming yeast peroxisomes into microfactories for the efficient production of high-value isoprenoids.
    Dusséaux S; Wajn WT; Liu Y; Ignea C; Kampranis SC
    Proc Natl Acad Sci U S A; 2020 Dec; 117(50):31789-31799. PubMed ID: 33268495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances in synthetic biology for engineering isoprenoid production in yeast.
    Vickers CE; Williams TC; Peng B; Cherry J
    Curr Opin Chem Biol; 2017 Oct; 40():47-56. PubMed ID: 28623722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae.
    Zhao J; Bao X; Li C; Shen Y; Hou J
    Appl Microbiol Biotechnol; 2016 May; 100(10):4561-71. PubMed ID: 26883346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic control of ERG20 expression combined with minimized endogenous downstream metabolism contributes to the improvement of geraniol production in Saccharomyces cerevisiae.
    Zhao J; Li C; Zhang Y; Shen Y; Hou J; Bao X
    Microb Cell Fact; 2017 Jan; 16(1):17. PubMed ID: 28137282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient production of (S)-limonene and geraniol in Saccharomyces cerevisiae through the utilization of an Erg20 mutant with enhanced GPP accumulation capability.
    Bernard A; Cha S; Shin H; Lee D; Hahn JS
    Metab Eng; 2024 May; 83():183-192. PubMed ID: 38631459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Harnessing Yeast Peroxisomes and Cytosol Acetyl-CoA for Sesquiterpene α-Humulene Production.
    Zhang C; Li M; Zhao GR; Lu W
    J Agric Food Chem; 2020 Feb; 68(5):1382-1389. PubMed ID: 31944688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overproduction of geraniol by enhanced precursor supply in Saccharomyces cerevisiae.
    Liu J; Zhang W; Du G; Chen J; Zhou J
    J Biotechnol; 2013 Dec; 168(4):446-51. PubMed ID: 24161921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering monoterpene production in yeast using a synthetic dominant negative geranyl diphosphate synthase.
    Ignea C; Pontini M; Maffei ME; Makris AM; Kampranis SC
    ACS Synth Biol; 2014 May; 3(5):298-306. PubMed ID: 24847684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orthogonal monoterpenoid biosynthesis in yeast constructed on an isomeric substrate.
    Ignea C; Raadam MH; Motawia MS; Makris AM; Vickers CE; Kampranis SC
    Nat Commun; 2019 Aug; 10(1):3799. PubMed ID: 31444322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine-learning guided elucidation of contribution of individual steps in the mevalonate pathway and construction of a yeast platform strain for terpenoid production.
    Mukherjee M; Blair RH; Wang ZQ
    Metab Eng; 2022 Nov; 74():139-149. PubMed ID: 36341776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orthogonal Engineering of Biosynthetic Pathway for Efficient Production of Limonene in Saccharomyces cerevisiae.
    Cheng S; Liu X; Jiang G; Wu J; Zhang JL; Lei D; Yuan YJ; Qiao J; Zhao GR
    ACS Synth Biol; 2019 May; 8(5):968-975. PubMed ID: 31063692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Primary and Secondary Metabolic Effects of a Key Gene Deletion (Δ
    Chen Y; Wang Y; Liu M; Qu J; Yao M; Li B; Ding M; Liu H; Xiao W; Yuan Y
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683746
    [No Abstract]   [Full Text] [Related]  

  • 13. Synthesis of 11-carbon terpenoids in yeast using protein and metabolic engineering.
    Ignea C; Pontini M; Motawia MS; Maffei ME; Makris AM; Kampranis SC
    Nat Chem Biol; 2018 Dec; 14(12):1090-1098. PubMed ID: 30429605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repurposing peroxisomes for microbial synthesis for biomolecules.
    Gao J; Zhou YJ
    Methods Enzymol; 2019; 617():83-111. PubMed ID: 30784416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction and Optimization of Nonclassical Isoprenoid Biosynthetic Pathways in Yeast Peroxisomes for (+)-Valencene Production.
    Cao C; Zhang H; Cao X; Kong S; Zhu B; Lin X; Zhou YJ
    J Agric Food Chem; 2023 Jul; 71(29):11124-11130. PubMed ID: 37437260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Harnessing Yeast Peroxisomes for Biosynthesis of Fatty-Acid-Derived Biofuels and Chemicals with Relieved Side-Pathway Competition.
    Zhou YJ; Buijs NA; Zhu Z; Gómez DO; Boonsombuti A; Siewers V; Nielsen J
    J Am Chem Soc; 2016 Nov; 138(47):15368-15377. PubMed ID: 27753483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peroxisome compartmentalization of a toxic enzyme improves alkaloid production.
    Grewal PS; Samson JA; Baker JJ; Choi B; Dueber JE
    Nat Chem Biol; 2021 Jan; 17(1):96-103. PubMed ID: 33046851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biotechnological production of limonene in microorganisms.
    Jongedijk E; Cankar K; Buchhaupt M; Schrader J; Bouwmeester H; Beekwilder J
    Appl Microbiol Biotechnol; 2016 Apr; 100(7):2927-38. PubMed ID: 26915992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The yeast peroxisome: A dynamic storage depot and subcellular factory for squalene overproduction.
    Liu GS; Li T; Zhou W; Jiang M; Tao XY; Liu M; Zhao M; Ren YH; Gao B; Wang FQ; Wei DZ
    Metab Eng; 2020 Jan; 57():151-161. PubMed ID: 31711816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced (S)-linalool production by fusion expression of farnesyl diphosphate synthase and linalool synthase in Saccharomyces cerevisiae.
    Deng Y; Sun M; Xu S; Zhou J
    J Appl Microbiol; 2016 Jul; 121(1):187-95. PubMed ID: 26909774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.