BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 33268529)

  • 1. Enhanced Antitumor Immunity via Endocrine Therapy Prevents Mammary Tumor Relapse and Increases Immune Checkpoint Blockade Sensitivity.
    Sequeira GR; Sahores A; Dalotto-Moreno T; Perrotta RM; Pataccini G; Vanzulli SI; Polo ML; Radisky DC; Sartorius CA; Novaro V; Lamb CA; Rabinovich GA; Salatino M; Lanari C
    Cancer Res; 2021 Mar; 81(5):1375-1387. PubMed ID: 33268529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ delivery of iPSC-derived dendritic cells with local radiotherapy generates systemic antitumor immunity and potentiates PD-L1 blockade in preclinical poorly immunogenic tumor models.
    Oba T; Makino K; Kajihara R; Yokoi T; Araki R; Abe M; Minderman H; Chang AE; Odunsi K; Ito F
    J Immunother Cancer; 2021 May; 9(5):. PubMed ID: 34049930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential Anti-PD1 Therapy Following Dendritic Cell Vaccination Improves Survival in a HER2 Mammary Carcinoma Model and Identifies a Critical Role for CD4 T Cells in Mediating the Response.
    Kodumudi KN; Ramamoorthi G; Snyder C; Basu A; Jia Y; Awshah S; Beyer AP; Wiener D; Lam L; Zhang H; Greene MI; Costa RLB; Czerniecki BJ
    Front Immunol; 2019; 10():1939. PubMed ID: 31475002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Progestin and antiprogestin responsiveness in breast cancer is driven by the PRA/PRB ratio via AIB1 or SMRT recruitment to the CCND1 and MYC promoters.
    Wargon V; Riggio M; Giulianelli S; Sequeira GR; Rojas P; May M; Polo ML; Gorostiaga MA; Jacobsen B; Molinolo A; Novaro V; Lanari C
    Int J Cancer; 2015 Jun; 136(11):2680-92. PubMed ID: 25363551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Releasing the brakes of tumor immunity with anti-PD-L1 and pushing its accelerator with L19-IL2 cures poorly immunogenic tumors when combined with radiotherapy.
    Olivo Pimentel V; Marcus D; van der Wiel AM; Lieuwes NG; Biemans R; Lieverse RI; Neri D; Theys J; Yaromina A; Dubois LJ; Lambin P
    J Immunother Cancer; 2021 Mar; 9(3):. PubMed ID: 33688020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remodeling the Tumor Microenvironment Sensitizes Breast Tumors to Anti-Programmed Death-Ligand 1 Immunotherapy.
    Clift R; Souratha J; Garrovillo SA; Zimmerman S; Blouw B
    Cancer Res; 2019 Aug; 79(16):4149-4159. PubMed ID: 31248966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanomicelle protects the immune activation effects of Paclitaxel and sensitizes tumors to anti-PD-1 Immunotherapy.
    Yang Q; Shi G; Chen X; Lin Y; Cheng L; Jiang Q; Yan X; Jiang M; Li Y; Zhang H; Wang H; Wang Y; Wang Q; Zhang Y; Liu Y; Su X; Dai L; Tang M; Li J; Zhang L; Qian Z; Yu D; Deng H
    Theranostics; 2020; 10(18):8382-8399. PubMed ID: 32724476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MEK Inhibition Remodels the Immune Landscape of Mutant
    Yang B; Li X; Fu Y; Guo E; Ye Y; Li F; Liu S; Xiao R; Liu C; Lu F; Huang J; Qin T; Han L; Peng G; Mills GB; Sun C; Chen G
    Cancer Res; 2021 May; 81(10):2714-2729. PubMed ID: 33589518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-Parameter Quantitative Imaging of Tumor Microenvironments Reveals Perivascular Immune Niches Associated With Anti-Tumor Immunity.
    Stoltzfus CR; Sivakumar R; Kunz L; Olin Pope BE; Menietti E; Speziale D; Adelfio R; Bacac M; Colombetti S; Perro M; Gerner MY
    Front Immunol; 2021; 12():726492. PubMed ID: 34421928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Newly emerged immunogenic neoantigens in established tumors enable hosts to regain immunosurveillance in a T-cell-dependent manner.
    Muramatsu T; Noguchi T; Sugiyama D; Kanada Y; Fujimaki K; Ito S; Gotoh M; Nishikawa H
    Int Immunol; 2021 Jan; 33(1):39-48. PubMed ID: 32729901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhaled TLR9 Agonist Renders Lung Tumors Permissive to PD-1 Blockade by Promoting Optimal CD4
    Gallotta M; Assi H; Degagné É; Kannan SK; Coffman RL; Guiducci C
    Cancer Res; 2018 Sep; 78(17):4943-4956. PubMed ID: 29945961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anti-PD-L1 Treatment Results in Functional Remodeling of the Macrophage Compartment.
    Xiong H; Mittman S; Rodriguez R; Moskalenko M; Pacheco-Sanchez P; Yang Y; Nickles D; Cubas R
    Cancer Res; 2019 Apr; 79(7):1493-1506. PubMed ID: 30679180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive antitumor immune response stimulated by bio-nanoparticle based vaccine and checkpoint blockade.
    Bai X; Zhou Y; Yokota Y; Matsumoto Y; Zhai B; Maarouf N; Hayashi H; Carlson R; Zhang S; Sousa A; Sun B; Ghanbari H; Dong X; Wands JR
    J Exp Clin Cancer Res; 2022 Apr; 41(1):132. PubMed ID: 35392977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitizing tumors to anti-PD-1 therapy by promoting NK and CD8+ T cells via pharmacological activation of FOXO3.
    Chung YM; Khan PP; Wang H; Tsai WB; Qiao Y; Yu B; Larrick JW; Hu MC
    J Immunother Cancer; 2021 Dec; 9(12):. PubMed ID: 34887262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wnt Inhibition Sensitizes PD-L1 Blockade Therapy by Overcoming Bone Marrow-Derived Myofibroblasts-Mediated Immune Resistance in Tumors.
    Huang T; Li F; Cheng X; Wang J; Zhang W; Zhang B; Tang Y; Li Q; Zhou C; Tu S
    Front Immunol; 2021; 12():619209. PubMed ID: 33790893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATR inhibitor AZD6738 enhances the antitumor activity of radiotherapy and immune checkpoint inhibitors by potentiating the tumor immune microenvironment in hepatocellular carcinoma.
    Sheng H; Huang Y; Xiao Y; Zhu Z; Shen M; Zhou P; Guo Z; Wang J; Wang H; Dai W; Zhang W; Sun J; Cao C
    J Immunother Cancer; 2020 May; 8(1):. PubMed ID: 32461345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Orally Active Galectin-3 Antagonist Inhibits Lung Adenocarcinoma Growth and Augments Response to PD-L1 Blockade.
    Vuong L; Kouverianou E; Rooney CM; McHugh BJ; Howie SEM; Gregory CD; Forbes SJ; Henderson NC; Zetterberg FR; Nilsson UJ; Leffler H; Ford P; Pedersen A; Gravelle L; Tantawi S; Schambye H; Sethi T; MacKinnon AC
    Cancer Res; 2019 Apr; 79(7):1480-1492. PubMed ID: 30674531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intravenous injection of the oncolytic virus M1 awakens antitumor T cells and overcomes resistance to checkpoint blockade.
    Liu Y; Cai J; Liu W; Lin Y; Guo L; Liu X; Qin Z; Xu C; Zhang Y; Su X; Deng K; Yan G; Liang J
    Cell Death Dis; 2020 Dec; 11(12):1062. PubMed ID: 33311488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blockade of PD-1/PD-L1 Pathway Enhances the Antigen-Presenting Capacity of Fibrocytes.
    Afroj T; Mitsuhashi A; Ogino H; Saijo A; Otsuka K; Yoneda H; Tobiume M; Nguyen NT; Goto H; Koyama K; Sugimoto M; Kondoh O; Nokihara H; Nishioka Y
    J Immunol; 2021 Mar; 206(6):1204-1214. PubMed ID: 33504617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sialic Acid Blockade Suppresses Tumor Growth by Enhancing T-cell-Mediated Tumor Immunity.
    Büll C; Boltje TJ; Balneger N; Weischer SM; Wassink M; van Gemst JJ; Bloemendal VR; Boon L; van der Vlag J; Heise T; den Brok MH; Adema GJ
    Cancer Res; 2018 Jul; 78(13):3574-3588. PubMed ID: 29703719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.