These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 33268529)

  • 1. Enhanced Antitumor Immunity via Endocrine Therapy Prevents Mammary Tumor Relapse and Increases Immune Checkpoint Blockade Sensitivity.
    Sequeira GR; Sahores A; Dalotto-Moreno T; Perrotta RM; Pataccini G; Vanzulli SI; Polo ML; Radisky DC; Sartorius CA; Novaro V; Lamb CA; Rabinovich GA; Salatino M; Lanari C
    Cancer Res; 2021 Mar; 81(5):1375-1387. PubMed ID: 33268529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ delivery of iPSC-derived dendritic cells with local radiotherapy generates systemic antitumor immunity and potentiates PD-L1 blockade in preclinical poorly immunogenic tumor models.
    Oba T; Makino K; Kajihara R; Yokoi T; Araki R; Abe M; Minderman H; Chang AE; Odunsi K; Ito F
    J Immunother Cancer; 2021 May; 9(5):. PubMed ID: 34049930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential Anti-PD1 Therapy Following Dendritic Cell Vaccination Improves Survival in a HER2 Mammary Carcinoma Model and Identifies a Critical Role for CD4 T Cells in Mediating the Response.
    Kodumudi KN; Ramamoorthi G; Snyder C; Basu A; Jia Y; Awshah S; Beyer AP; Wiener D; Lam L; Zhang H; Greene MI; Costa RLB; Czerniecki BJ
    Front Immunol; 2019; 10():1939. PubMed ID: 31475002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Progestin and antiprogestin responsiveness in breast cancer is driven by the PRA/PRB ratio via AIB1 or SMRT recruitment to the CCND1 and MYC promoters.
    Wargon V; Riggio M; Giulianelli S; Sequeira GR; Rojas P; May M; Polo ML; Gorostiaga MA; Jacobsen B; Molinolo A; Novaro V; Lanari C
    Int J Cancer; 2015 Jun; 136(11):2680-92. PubMed ID: 25363551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Releasing the brakes of tumor immunity with anti-PD-L1 and pushing its accelerator with L19-IL2 cures poorly immunogenic tumors when combined with radiotherapy.
    Olivo Pimentel V; Marcus D; van der Wiel AM; Lieuwes NG; Biemans R; Lieverse RI; Neri D; Theys J; Yaromina A; Dubois LJ; Lambin P
    J Immunother Cancer; 2021 Mar; 9(3):. PubMed ID: 33688020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remodeling the Tumor Microenvironment Sensitizes Breast Tumors to Anti-Programmed Death-Ligand 1 Immunotherapy.
    Clift R; Souratha J; Garrovillo SA; Zimmerman S; Blouw B
    Cancer Res; 2019 Aug; 79(16):4149-4159. PubMed ID: 31248966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanomicelle protects the immune activation effects of Paclitaxel and sensitizes tumors to anti-PD-1 Immunotherapy.
    Yang Q; Shi G; Chen X; Lin Y; Cheng L; Jiang Q; Yan X; Jiang M; Li Y; Zhang H; Wang H; Wang Y; Wang Q; Zhang Y; Liu Y; Su X; Dai L; Tang M; Li J; Zhang L; Qian Z; Yu D; Deng H
    Theranostics; 2020; 10(18):8382-8399. PubMed ID: 32724476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MEK Inhibition Remodels the Immune Landscape of Mutant
    Yang B; Li X; Fu Y; Guo E; Ye Y; Li F; Liu S; Xiao R; Liu C; Lu F; Huang J; Qin T; Han L; Peng G; Mills GB; Sun C; Chen G
    Cancer Res; 2021 May; 81(10):2714-2729. PubMed ID: 33589518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted delivery of anti-miRNA21 sensitizes PD-L1
    Kim EH; Choi J; Jang H; Kim Y; Lee JW; Ryu Y; Choi J; Choi Y; Chi SG; Kwon IC; Yang Y; Kim SH
    Theranostics; 2024; 14(10):3777-3792. PubMed ID: 38994018
    [No Abstract]   [Full Text] [Related]  

  • 10. Multi-Parameter Quantitative Imaging of Tumor Microenvironments Reveals Perivascular Immune Niches Associated With Anti-Tumor Immunity.
    Stoltzfus CR; Sivakumar R; Kunz L; Olin Pope BE; Menietti E; Speziale D; Adelfio R; Bacac M; Colombetti S; Perro M; Gerner MY
    Front Immunol; 2021; 12():726492. PubMed ID: 34421928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Newly emerged immunogenic neoantigens in established tumors enable hosts to regain immunosurveillance in a T-cell-dependent manner.
    Muramatsu T; Noguchi T; Sugiyama D; Kanada Y; Fujimaki K; Ito S; Gotoh M; Nishikawa H
    Int Immunol; 2021 Jan; 33(1):39-48. PubMed ID: 32729901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhaled TLR9 Agonist Renders Lung Tumors Permissive to PD-1 Blockade by Promoting Optimal CD4
    Gallotta M; Assi H; Degagné É; Kannan SK; Coffman RL; Guiducci C
    Cancer Res; 2018 Sep; 78(17):4943-4956. PubMed ID: 29945961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anti-PD-L1 Treatment Results in Functional Remodeling of the Macrophage Compartment.
    Xiong H; Mittman S; Rodriguez R; Moskalenko M; Pacheco-Sanchez P; Yang Y; Nickles D; Cubas R
    Cancer Res; 2019 Apr; 79(7):1493-1506. PubMed ID: 30679180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitizing tumors to anti-PD-1 therapy by promoting NK and CD8+ T cells via pharmacological activation of FOXO3.
    Chung YM; Khan PP; Wang H; Tsai WB; Qiao Y; Yu B; Larrick JW; Hu MC
    J Immunother Cancer; 2021 Dec; 9(12):. PubMed ID: 34887262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wnt Inhibition Sensitizes PD-L1 Blockade Therapy by Overcoming Bone Marrow-Derived Myofibroblasts-Mediated Immune Resistance in Tumors.
    Huang T; Li F; Cheng X; Wang J; Zhang W; Zhang B; Tang Y; Li Q; Zhou C; Tu S
    Front Immunol; 2021; 12():619209. PubMed ID: 33790893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATR inhibitor AZD6738 enhances the antitumor activity of radiotherapy and immune checkpoint inhibitors by potentiating the tumor immune microenvironment in hepatocellular carcinoma.
    Sheng H; Huang Y; Xiao Y; Zhu Z; Shen M; Zhou P; Guo Z; Wang J; Wang H; Dai W; Zhang W; Sun J; Cao C
    J Immunother Cancer; 2020 May; 8(1):. PubMed ID: 32461345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Orally Active Galectin-3 Antagonist Inhibits Lung Adenocarcinoma Growth and Augments Response to PD-L1 Blockade.
    Vuong L; Kouverianou E; Rooney CM; McHugh BJ; Howie SEM; Gregory CD; Forbes SJ; Henderson NC; Zetterberg FR; Nilsson UJ; Leffler H; Ford P; Pedersen A; Gravelle L; Tantawi S; Schambye H; Sethi T; MacKinnon AC
    Cancer Res; 2019 Apr; 79(7):1480-1492. PubMed ID: 30674531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intravenous injection of the oncolytic virus M1 awakens antitumor T cells and overcomes resistance to checkpoint blockade.
    Liu Y; Cai J; Liu W; Lin Y; Guo L; Liu X; Qin Z; Xu C; Zhang Y; Su X; Deng K; Yan G; Liang J
    Cell Death Dis; 2020 Dec; 11(12):1062. PubMed ID: 33311488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sialic Acid Blockade Suppresses Tumor Growth by Enhancing T-cell-Mediated Tumor Immunity.
    Büll C; Boltje TJ; Balneger N; Weischer SM; Wassink M; van Gemst JJ; Bloemendal VR; Boon L; van der Vlag J; Heise T; den Brok MH; Adema GJ
    Cancer Res; 2018 Jul; 78(13):3574-3588. PubMed ID: 29703719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of MDM2 Promotes Antitumor Responses in p53 Wild-Type Cancer Cells through Their Interaction with the Immune and Stromal Microenvironment.
    Wang HQ; Mulford IJ; Sharp F; Liang J; Kurtulus S; Trabucco G; Quinn DS; Longmire TA; Patel N; Patil R; Shirley MD; Chen Y; Wang H; Ruddy DA; Fabre C; Williams JA; Hammerman PS; Mataraza J; Platzer B; Halilovic E
    Cancer Res; 2021 Jun; 81(11):3079-3091. PubMed ID: 33504557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.