BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 33268548)

  • 1. Extensive Cortical Convergence to Primate Reticulospinal Pathways.
    Fisher KM; Zaaimi B; Edgley SA; Baker SN
    J Neurosci; 2021 Feb; 41(5):1005-1018. PubMed ID: 33268548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Corticospinal Inputs to Primate Motoneurons Innervating the Forelimb from Two Divisions of Primary Motor Cortex and Area 3a.
    Witham CL; Fisher KM; Edgley SA; Baker SN
    J Neurosci; 2016 Mar; 36(9):2605-16. PubMed ID: 26937002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corticobulbar projections from distinct motor cortical areas to the reticular formation in macaque monkeys.
    Fregosi M; Contestabile A; Hamadjida A; Rouiller EM
    Eur J Neurosci; 2017 Jun; 45(11):1379-1395. PubMed ID: 28394483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences in the corticospinal projection from primary motor cortex and supplementary motor area to macaque upper limb motoneurons: an anatomical and electrophysiological study.
    Maier MA; Armand J; Kirkwood PA; Yang HW; Davis JN; Lemon RN
    Cereb Cortex; 2002 Mar; 12(3):281-96. PubMed ID: 11839602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional differences in corticospinal projections from macaque primary motor cortex and supplementary motor area.
    Lemon RN; Maier MA; Armand J; Kirkwood PA; Yang HW
    Adv Exp Med Biol; 2002; 508():425-34. PubMed ID: 12171139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Existence of the StartReact Effect Implies Reticulospinal, Not Corticospinal, Inputs Dominate Drive to Motoneurons during Voluntary Movement.
    Tapia JA; Tohyama T; Poll A; Baker SN
    J Neurosci; 2022 Oct; 42(40):7634-7647. PubMed ID: 36658461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct and indirect connections with upper limb motoneurons from the primate reticulospinal tract.
    Riddle CN; Edgley SA; Baker SN
    J Neurosci; 2009 Apr; 29(15):4993-9. PubMed ID: 19369568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of Neurons in the Primate Reticular Formation and Changes after Recovery from Pyramidal Tract Lesion.
    Zaaimi B; Soteropoulos DS; Fisher KM; Riddle CN; Baker SN
    J Neurosci; 2018 Jul; 38(27):6190-6206. PubMed ID: 29793974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Convergence on reticulospinal neurons mediating contralateral pyramidal disynaptic EPSPs to neck motoneurons.
    Alstermark B; Pinter M; Sasaki S
    Brain Res; 1983 Jan; 259(1):151-4. PubMed ID: 6297667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in descending motor pathway connectivity after corticospinal tract lesion in macaque monkey.
    Zaaimi B; Edgley SA; Soteropoulos DS; Baker SN
    Brain; 2012 Jul; 135(Pt 7):2277-89. PubMed ID: 22581799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cortical, Corticospinal, and Reticulospinal Contributions to Strength Training.
    Glover IS; Baker SN
    J Neurosci; 2020 Jul; 40(30):5820-5832. PubMed ID: 32601242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Corticofugal influences on the reticulospinal neurons of gigantocellular nucleus in cats].
    Piliavskiĭ AI
    Neirofiziologiia; 1976; 8(3):250-8. PubMed ID: 181690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Locomotor role of the corticoreticular-reticulospinal-spinal interneuronal system.
    Matsuyama K; Mori F; Nakajima K; Drew T; Aoki M; Mori S
    Prog Brain Res; 2004; 143():239-49. PubMed ID: 14653169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hand Motor Recovery Following Extensive Frontoparietal Cortical Injury Is Accompanied by Upregulated Corticoreticular Projections in Monkey.
    Darling WG; Ge J; Stilwell-Morecraft KS; Rotella DL; Pizzimenti MA; Morecraft RJ
    J Neurosci; 2018 Jul; 38(28):6323-6339. PubMed ID: 29899028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Both Corticospinal and Reticulospinal Tracts Control Force of Contraction.
    Glover IS; Baker SN
    J Neurosci; 2022 Apr; 42(15):3150-3164. PubMed ID: 35241490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How to enhance ipsilateral actions of pyramidal tract neurons.
    Jankowska E; Cabaj A; Pettersson LG
    J Neurosci; 2005 Aug; 25(32):7401-5. PubMed ID: 16093391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Connections between pericruciate cortex and the medullary reticulospinal neurons in cat: an electrophysiological study.
    He XW; Wu CP
    Exp Brain Res; 1985; 61(1):109-16. PubMed ID: 3002834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Striking differences in transmission of corticospinal excitation to upper limb motoneurons in two primate species.
    Nakajima K; Maier MA; Kirkwood PA; Lemon RN
    J Neurophysiol; 2000 Aug; 84(2):698-709. PubMed ID: 10938297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Corticospinal control from M1 and PMv areas on inhibitory cervical propriospinal neurons in humans.
    Giboin LS; Sangari S; Lackmy-Vallée A; Messé A; Pradat-Diehl P; Marchand-Pauvert V
    Physiol Rep; 2017 Nov; 5(20):. PubMed ID: 29084839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different contributions of primary motor cortex, reticular formation, and spinal cord to fractionated muscle activation.
    Zaaimi B; Dean LR; Baker SN
    J Neurophysiol; 2018 Jan; 119(1):235-250. PubMed ID: 29046427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.