These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 3326865)
1. The combined effect of sub-optimal temperature and sub-optimal pH on growth and toxin formation from spores of Clostridium botulinum. Graham AF; Lund BM J Appl Bacteriol; 1987 Nov; 63(5):387-93. PubMed ID: 3326865 [TBL] [Abstract][Full Text] [Related]
2. Effect of pH and NaCl on growth from spores of non-proteolytic Clostridium botulinum at chill temperature. Graham AF; Mason DR; Maxwell FJ; Peck MW Lett Appl Microbiol; 1997 Feb; 24(2):95-100. PubMed ID: 9081311 [TBL] [Abstract][Full Text] [Related]
3. Effect of water activity and pH on growth and toxin production by Clostridium botulinum type G. Briozzo J; de Lagarde EA; Chirife J; Parada JL Appl Environ Microbiol; 1986 Apr; 51(4):844-8. PubMed ID: 3518631 [TBL] [Abstract][Full Text] [Related]
4. Factors influencing Clostridium botulinum spore germination, outgrowth, and toxin formation in acidified media. Wong DM; Young-Perkins KE; Merson RL Appl Environ Microbiol; 1988 Jun; 54(6):1446-50. PubMed ID: 3046489 [TBL] [Abstract][Full Text] [Related]
5. Combined effect of water activity and pH on inhibition of toxin production by Clostridium botulinum in cooked, vacuum-packed potatoes. Dodds KL Appl Environ Microbiol; 1989 Mar; 55(3):656-60. PubMed ID: 2648990 [TBL] [Abstract][Full Text] [Related]
6. Minimal growth temperature, sodium chloride tolerance, pH sensitivity, and toxin production of marine and terrestrial strains of Clostridium botulinum type C. Segner WP; Schmidt CF; Boltz JK Appl Microbiol; 1971 Dec; 22(6):1025-9. PubMed ID: 4944801 [TBL] [Abstract][Full Text] [Related]
7. Inhibitory effect of combinations of heat treatment, pH, and sodium chloride on a growth from spores of nonproteolytic Clostridium botulinum at refrigeration temperature. Graham AF; Mason DR; Peck MW Appl Environ Microbiol; 1996 Jul; 62(7):2664-8. PubMed ID: 8779606 [TBL] [Abstract][Full Text] [Related]
9. Toxin production by Clostridium botulinum in grass. Notermans S; Kozaki S; van Schothorst M Appl Environ Microbiol; 1979 Nov; 38(5):767-71. PubMed ID: 44443 [TBL] [Abstract][Full Text] [Related]
10. Optimization of culture conditions for toxin production of type G Clostridium botulinum. Calleri de Milan MC; Mayorga LS; Puig de Centorbi ON Zentralbl Bakteriol; 1992 Jul; 277(2):161-9. PubMed ID: 1520974 [TBL] [Abstract][Full Text] [Related]
11. Clostridium botulinum growth and toxin production in tomato juice containing Aspergillus gracilis. Odlaug TE; Pflug IJ Appl Environ Microbiol; 1979 Mar; 37(3):496-504. PubMed ID: 36843 [TBL] [Abstract][Full Text] [Related]
12. Growth and formation of toxin by Clostridium botulinum in peeled, inoculated, vacuum-packed potatoes after a double pasteurization and storage at 25 degrees C. Lund BM; Graham AF; George SM J Appl Bacteriol; 1988 Mar; 64(3):241-6. PubMed ID: 3290178 [TBL] [Abstract][Full Text] [Related]
13. Toxin production by Clostridium botulinum type A under various fermentation conditions. Siegel LS; Metzger JF Appl Environ Microbiol; 1979 Oct; 38(4):606-11. PubMed ID: 44175 [TBL] [Abstract][Full Text] [Related]
14. Growth and toxin production by Clostridium botulinum on inoculated fresh-cut packaged vegetables. Austin JW; Dodds KL; Blanchfield B; Farber JM J Food Prot; 1998 Mar; 61(3):324-8. PubMed ID: 9708304 [TBL] [Abstract][Full Text] [Related]
15. Dependence of Clostridium botulinum gas and protease production on culture conditions. Montville TJ Appl Environ Microbiol; 1983 Feb; 45(2):571-5. PubMed ID: 6338828 [TBL] [Abstract][Full Text] [Related]
16. Growth and toxin production of proteolytic Clostridium botulinum in aseptically steamed rice products at pH 4.6 to 6.8, packed under modified atmosphere, using a deoxidant pack. Kimura B; Kimura R; Fukaya T; Sakuma K; Miya S; Fujii T J Food Prot; 2008 Mar; 71(3):468-72. PubMed ID: 18389687 [TBL] [Abstract][Full Text] [Related]
17. Effect of lysozyme concentration, heating at 90 degrees C, and then incubation at chilled temperatures on growth from spores of non-proteolytic Clostridium botulinum. Peck MW; Fernandez PS Lett Appl Microbiol; 1995 Jul; 21(1):50-4. PubMed ID: 7662337 [TBL] [Abstract][Full Text] [Related]
18. The combined effect of incubation temperature, pH and sorbic acid on the probability of growth of non-proteolytic, type B Clostridium botulinum. Lund BM; Graham AF; George SM; Brown D J Appl Bacteriol; 1990 Oct; 69(4):481-92. PubMed ID: 2292514 [TBL] [Abstract][Full Text] [Related]
19. Effect of heat treatment on survival of, and growth from, spores of nonproteolytic Clostridium botulinum at refrigeration temperatures. Peck MW; Lund BM; Fairbairn DA; Kaspersson AS; Undeland PC Appl Environ Microbiol; 1995 May; 61(5):1780-5. PubMed ID: 7646016 [TBL] [Abstract][Full Text] [Related]
20. Growth and toxin production by Clostridium botulinum in moldy tomato juice. Huhtanen CN; Naghski J; Custer CS; Russell RW Appl Environ Microbiol; 1976 Nov; 32(5):711-5. PubMed ID: 10844 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]