These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 33268782)
21. [Cellulose hydrolysis and ethanol production by a facultative anaerobe bacteria consortium H and its identification]. Du R; Li S; Zhang X; Wang L Sheng Wu Gong Cheng Xue Bao; 2010 Jul; 26(7):960-5. PubMed ID: 20954397 [TBL] [Abstract][Full Text] [Related]
22. Synthetic microbial consortium with specific roles designated by genetic circuits for cooperative chemical production. Honjo H; Iwasaki K; Soma Y; Tsuruno K; Hamada H; Hanai T Metab Eng; 2019 Sep; 55():268-275. PubMed ID: 31401244 [TBL] [Abstract][Full Text] [Related]
23. Design and development of a "Y-shaped" microbial consortium capable of simultaneously utilizing biomass sugars for efficient production of butanol. Zhao C; Sinumvayo JP; Zhang Y; Li Y Metab Eng; 2019 Sep; 55():111-119. PubMed ID: 31251983 [TBL] [Abstract][Full Text] [Related]
24. A constitutive expression system for cellulase secretion in Escherichia coli and its use in bioethanol production. Munjal N; Jawed K; Wajid S; Yazdani SS PLoS One; 2015; 10(3):e0119917. PubMed ID: 25768292 [TBL] [Abstract][Full Text] [Related]
25. Heterologous expression of a β-D-glucosidase in Caldicellulosiruptor bescii has a surprisingly modest effect on the activity of the exoproteome and growth on crystalline cellulose. Kim SK; Chung D; Himmel ME; Bomble YJ; Westpheling J J Ind Microbiol Biotechnol; 2017 Dec; 44(12):1643-1651. PubMed ID: 28942503 [TBL] [Abstract][Full Text] [Related]
26. Kinetics and metabolism of cellulose degradation at high substrate concentrations in steady-state continuous cultures of Clostridium cellulolyticum on a chemically defined medium. Desvaux M; Guedon E; Petitdemange H Appl Environ Microbiol; 2001 Sep; 67(9):3837-45. PubMed ID: 11525975 [TBL] [Abstract][Full Text] [Related]
27. In Silico Metabolic Design of Two-Strain Biofilm Systems Predicts Enhanced Biomass Production and Biochemical Synthesis. Patel A; Carlson RP; Henson MA Biotechnol J; 2019 Jul; 14(7):e1800511. PubMed ID: 30927492 [TBL] [Abstract][Full Text] [Related]
28. Top-Down Enrichment Guides in Formation of Synthetic Microbial Consortia for Biomass Degradation. Gilmore SP; Lankiewicz TS; Wilken SE; Brown JL; Sexton JA; Henske JK; Theodorou MK; Valentine DL; O'Malley MA ACS Synth Biol; 2019 Sep; 8(9):2174-2185. PubMed ID: 31461261 [TBL] [Abstract][Full Text] [Related]
30. Characterization of a defined cellulolytic and xylanolytic bacterial consortium for bioprocessing of cellulose and hemicelluloses. Okeke BC; Lu J Appl Biochem Biotechnol; 2011 Apr; 163(7):869-81. PubMed ID: 20859703 [TBL] [Abstract][Full Text] [Related]
31. Insights into Clostridium phytofermentans biofilm formation: aggregation, microcolony development and the role of extracellular DNA. Zuroff TR; Gu W; Fore RL; Leschine SB; Curtis WR Microbiology (Reading); 2014 Jun; 160(Pt 6):1134-1143. PubMed ID: 24625451 [TBL] [Abstract][Full Text] [Related]
32. Evolution of a Biomass-Fermenting Bacterium To Resist Lignin Phenolics. Cerisy T; Souterre T; Torres-Romero I; Boutard M; Dubois I; Patrouix J; Labadie K; Berrabah W; Salanoubat M; Doring V; Tolonen AC Appl Environ Microbiol; 2017 Jun; 83(11):. PubMed ID: 28363966 [TBL] [Abstract][Full Text] [Related]
33. Characterization and evaluation of a natural derived bacterial consortium for efficient lignocellulosic biomass valorization. Du R; Li C; Pan P; Sze Ki Lin C; Yan J Bioresour Technol; 2021 Jun; 329():124909. PubMed ID: 33684842 [TBL] [Abstract][Full Text] [Related]
34. Genome and Transcriptome of Clostridium phytofermentans, Catalyst for the Direct Conversion of Plant Feedstocks to Fuels. Petit E; Coppi MV; Hayes JC; Tolonen AC; Warnick T; Latouf WG; Amisano D; Biddle A; Mukherjee S; Ivanova N; Lykidis A; Land M; Hauser L; Kyrpides N; Henrissat B; Lau J; Schnell DJ; Church GM; Leschine SB; Blanchard JL PLoS One; 2015; 10(6):e0118285. PubMed ID: 26035711 [TBL] [Abstract][Full Text] [Related]
35. A paradigm shift in biomass technology from complete to partial cellulose hydrolysis: lessons learned from nature. Chen R Bioengineered; 2015; 6(2):69-72. PubMed ID: 25587851 [TBL] [Abstract][Full Text] [Related]
37. Characterization of cellulolytic microbial consortium enriched on Napier grass using metagenomic approaches. Kanokratana P; Wongwilaiwalin S; Mhuantong W; Tangphatsornruang S; Eurwilaichitr L; Champreda V J Biosci Bioeng; 2018 Apr; 125(4):439-447. PubMed ID: 29169786 [TBL] [Abstract][Full Text] [Related]
38. Construction of cellulose-utilizing Escherichia coli based on a secretable cellulase. Gao D; Luan Y; Wang Q; Liang Q; Qi Q Microb Cell Fact; 2015 Oct; 14():159. PubMed ID: 26452465 [TBL] [Abstract][Full Text] [Related]
39. Evaluation of Ethanol Production Activity by Engineered Saccharomyces cerevisiae Fermenting Cellobiose through the Phosphorolytic Pathway in Simultaneous Saccharification and Fermentation of Cellulose. Lee WH; Jin YS J Microbiol Biotechnol; 2017 Sep; 27(9):1649-1656. PubMed ID: 28683531 [TBL] [Abstract][Full Text] [Related]
40. Metabolic and process engineering of Clostridium cellulovorans for biofuel production from cellulose. Yang X; Xu M; Yang ST Metab Eng; 2015 Nov; 32():39-48. PubMed ID: 26365585 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]