BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

527 related articles for article (PubMed ID: 33268814)

  • 1. The stress-responsive kinase DYRK2 activates heat shock factor 1 promoting resistance to proteotoxic stress.
    Moreno R; Banerjee S; Jackson AW; Quinn J; Baillie G; Dixon JE; Dinkova-Kostova AT; Edwards J; de la Vega L
    Cell Death Differ; 2021 May; 28(5):1563-1578. PubMed ID: 33268814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual inhibition of HSF1 and DYRK2 impedes cancer progression.
    Tandon V; Moreno R; Allmeroth K; Quinn J; Wiley SE; Nicely LG; Denzel MS; Edwards J; de la Vega L; Banerjee S
    Biosci Rep; 2023 Jan; 43(1):. PubMed ID: 36622366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emerging roles of DYRK2 in cancer.
    Tandon V; de la Vega L; Banerjee S
    J Biol Chem; 2021; 296():100233. PubMed ID: 33376136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of dual-specificity tyrosine phosphorylation-regulated kinase 2 perturbs 26S proteasome-addicted neoplastic progression.
    Banerjee S; Wei T; Wang J; Lee JJ; Gutierrez HL; Chapman O; Wiley SE; Mayfield JE; Tandon V; Juarez EF; Chavez L; Liang R; Sah RL; Costello C; Mesirov JP; de la Vega L; Cooper KL; Dixon JE; Xiao J; Lei X
    Proc Natl Acad Sci U S A; 2019 Dec; 116(49):24881-24891. PubMed ID: 31754034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. mTOR is essential for the proteotoxic stress response, HSF1 activation and heat shock protein synthesis.
    Chou SD; Prince T; Gong J; Calderwood SK
    PLoS One; 2012; 7(6):e39679. PubMed ID: 22768106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HER2/ErbB2 activates HSF1 and thereby controls HSP90 clients including MIF in HER2-overexpressing breast cancer.
    Schulz R; Streller F; Scheel AH; Rüschoff J; Reinert MC; Dobbelstein M; Marchenko ND; Moll UM
    Cell Death Dis; 2014 Jan; 5(1):e980. PubMed ID: 24384723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The heat-shock, or HSF1-mediated proteotoxic stress, response in cancer: from proteomic stability to oncogenesis.
    Dai C
    Philos Trans R Soc Lond B Biol Sci; 2018 Jan; 373(1738):. PubMed ID: 29203710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of HSF1 transcriptional complexes under proteotoxic stress: Mechanisms of heat shock gene transcription involve the stress-induced HSF1 complex formation, changes in chromatin states, and formation of phase-separated condensates: Mechanisms of heat shock gene transcription involve the stress-induced HSF1 complex formation, changes in chromatin states, and formation of phase-separated condensates.
    Fujimoto M; Takii R; Nakai A
    Bioessays; 2023 Jul; 45(7):e2300036. PubMed ID: 37092382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AKT1 mediates multiple phosphorylation events that functionally promote HSF1 activation.
    Lu WC; Omari R; Ray H; Wang J; Williams I; Jacobs C; Hockaden N; Bochman ML; Carpenter RL
    FEBS J; 2022 Jul; 289(13):3876-3893. PubMed ID: 35080342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorylation of HSF1 by PIM2 Induces PD-L1 Expression and Promotes Tumor Growth in Breast Cancer.
    Yang T; Ren C; Lu C; Qiao P; Han X; Wang L; Wang D; Lv S; Sun Y; Yu Z
    Cancer Res; 2019 Oct; 79(20):5233-5244. PubMed ID: 31409638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NRF2 transcriptionally activates the
    Paul S; Ghosh S; Mandal S; Sau S; Pal M
    J Biol Chem; 2018 Dec; 293(50):19303-19316. PubMed ID: 30309986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TRIM11 cooperates with HSF1 to suppress the anti-tumor effect of proteotoxic stress drugs.
    Chen L; Yang X
    Cell Cycle; 2019 Jan; 18(1):60-68. PubMed ID: 30563406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HSF1 Can Prevent Inflammation following Heat Shock by Inhibiting the Excessive Activation of the
    Janus P; Kuś P; Vydra N; Toma-Jonik A; Stokowy T; Mrowiec K; Wojtaś B; Gielniewski B; Widłak W
    Cells; 2022 Aug; 11(16):. PubMed ID: 36010586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability of the human pregnane X receptor is regulated by E3 ligase UBR5 and serine/threonine kinase DYRK2.
    Ong SS; Goktug AN; Elias A; Wu J; Saunders D; Chen T
    Biochem J; 2014 Apr; 459(1):193-203. PubMed ID: 24438055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heat shock factor 1 (HSF1) specifically potentiates c-MYC-mediated transcription independently of the canonical heat shock response.
    Xu M; Lin L; Ram BM; Shriwas O; Chuang KH; Dai S; Su KH; Tang Z; Dai C
    Cell Rep; 2023 Jun; 42(6):112557. PubMed ID: 37224019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsic proteotoxic stress levels vary and act as a predictive marker for sensitivity of cancer cells to Hsp90 inhibition.
    Pastorek M; Muller P; Coates PJ; Vojtesek B
    PLoS One; 2018; 13(8):e0202758. PubMed ID: 30138434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of molecular chaperone gene transcription involves the serine phosphorylation, 14-3-3 epsilon binding, and cytoplasmic sequestration of heat shock factor 1.
    Wang X; Grammatikakis N; Siganou A; Calderwood SK
    Mol Cell Biol; 2003 Sep; 23(17):6013-26. PubMed ID: 12917326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Downregulation of dual-specificity tyrosine-regulated kinase 2 promotes tumor cell proliferation and invasion by enhancing cyclin-dependent kinase 14 expression in breast cancer.
    Imawari Y; Mimoto R; Hirooka S; Morikawa T; Takeyama H; Yoshida K
    Cancer Sci; 2018 Feb; 109(2):363-372. PubMed ID: 29193658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heat shock factor 1 (HSF1) cooperates with estrogen receptor α (ERα) in the regulation of estrogen action in breast cancer cells.
    Vydra N; Janus P; Kus P; Stokowy T; Mrowiec K; Toma-Jonik A; Krzywon A; Cortez AJ; Wojtas B; Gielniewski B; Jaksik R; Kimmel M; Widlak W
    Elife; 2021 Nov; 10():. PubMed ID: 34783649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DYRK2 controls the epithelial-mesenchymal transition in breast cancer by degrading Snail.
    Mimoto R; Taira N; Takahashi H; Yamaguchi T; Okabe M; Uchida K; Miki Y; Yoshida K
    Cancer Lett; 2013 Oct; 339(2):214-25. PubMed ID: 23791882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.