BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 3326883)

  • 1. Human teratocarcinoma stem cells: glycolipid antigen expression and modulation during differentiation.
    Andrews PW
    J Cell Biochem; 1987 Dec; 35(4):321-32. PubMed ID: 3326883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbohydrate antigens of embryonal carcinoma cells: changes upon differentiation.
    Fenderson BA; Andrews PW
    APMIS Suppl; 1992; 27():109-18. PubMed ID: 1355656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different patterns of glycolipid antigens are expressed following differentiation of TERA-2 human embryonal carcinoma cells induced by retinoic acid, hexamethylene bisacetamide (HMBA) or bromodeoxyuridine (BUdR).
    Andrews PW; Nudelman E; Hakomori S; Fenderson BA
    Differentiation; 1990 Apr; 43(2):131-8. PubMed ID: 2373286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human Wnt-13 is developmentally regulated during the differentiation of NTERA-2 pluripotent human embryonal carcinoma cells.
    Wakeman JA; Walsh J; Andrews PW
    Oncogene; 1998 Jul; 17(2):179-86. PubMed ID: 9674702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The surface glycolipid antigen specific for the internal cell mass of the mouse blastocyst and of the stem cells of murine teratocarcinoma F9].
    Anfimova ML; Bannikov GA; Troianovskiĭ SM
    Ontogenez; 1989; 20(2):158-63. PubMed ID: 2472584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Teratocarcinoma stem cells as a model for differentiation in the mouse embryo.
    Lehtonen E; Laasonen A; Tienari J
    Int J Dev Biol; 1989 Mar; 33(1):105-15. PubMed ID: 2485690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retinoic acid-induced differentiation of the developmentally pluripotent human germ cell tumor-derived cell line, NCCIT.
    Damjanov I; Horvat B; Gibas Z
    Lab Invest; 1993 Feb; 68(2):220-32. PubMed ID: 7680083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycolipid core structure switching from globo- to lacto- and ganglio-series during retinoic acid-induced differentiation of TERA-2-derived human embryonal carcinoma cells.
    Fenderson BA; Andrews PW; Nudelman E; Clausen H; Hakomori S
    Dev Biol; 1987 Jul; 122(1):21-34. PubMed ID: 3297853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pluripotent embryonal carcinoma clones derived from the human teratocarcinoma cell line Tera-2. Differentiation in vivo and in vitro.
    Andrews PW; Damjanov I; Simon D; Banting GS; Carlin C; Dracopoli NC; Føgh J
    Lab Invest; 1984 Feb; 50(2):147-62. PubMed ID: 6694356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The CDK inhibitor p27 enhances neural differentiation in pluripotent NTERA2 human EC cells, but does not permit differentiation of 2102Ep nullipotent human EC cells.
    Bahrami AR; Matin MM; Andrews PW
    Mech Dev; 2005 Sep; 122(9):1034-42. PubMed ID: 16023837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GT3 and its O-acetylated derivative are the principal A2B5-reactive gangliosides in cultured O2A lineage cells and are down-regulated along with O-acetyl GD3 during differentiation to oligodendrocytes.
    Farrer RG; Quarles RH
    J Neurosci Res; 1999 Aug; 57(3):371-80. PubMed ID: 10412028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Globo-series carbohydrate antigens are expressed in different forms on human and murine teratocarcinoma-derived cells.
    Krupnick JG; Damjanov I; Damjanov A; Zhu ZM; Fenderson BA
    Int J Cancer; 1994 Dec; 59(5):692-8. PubMed ID: 7960243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monoclonal antibodies to human embryonal carcinoma cells: antigenic relationships of germ cell tumors.
    Rinke de Wit TF; Wilson L; van den Elsen PJ; Thielen F; Brekhoff D; Oosterhuis JW; Pera MF; Stern PL
    Lab Invest; 1991 Aug; 65(2):180-91. PubMed ID: 1881121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A pluripotent human stem-cell clone isolated from the TERA-2 teratocarcinoma line lacks antigens SSEA-3 and SSEA-4 in vitro, but expresses these antigens when grown as a xenograft tumor.
    Andrews PW; Damjanov I; Simon D; Dignazio M
    Differentiation; 1985; 29(2):127-35. PubMed ID: 2412924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation of human embryonal carcinoma stem cells by immunomagnetic sorting.
    Przyborski SA
    Stem Cells; 2001; 19(6):500-4. PubMed ID: 11713341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of peanut agglutinin-resistant embryonal carcinoma cell-surface variants.
    Rosenstraus MJ; Hannis M; Kupatt LJ
    J Cell Physiol; 1982 Aug; 112(2):162-70. PubMed ID: 6126483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Teratocarcinoma: neoplastic lessons about normal embryogenesis.
    Damjanov I
    Int J Dev Biol; 1993 Mar; 37(1):39-46. PubMed ID: 8507568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manipulation of human pluripotent embryonal carcinoma stem cells and the development of neural subtypes.
    Stewart R; Christie VB; Przyborski SA
    Stem Cells; 2003; 21(3):248-56. PubMed ID: 12743319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differentiation antigens defined by mouse monoclonal antibodies against human germ cell tumors.
    Fujimoto J; Hata J; Ishii E; Tanaka S; Kannagi R; Ueyama Y; Tamaoki N
    Lab Invest; 1987 Oct; 57(4):350-8. PubMed ID: 2823004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Embryonal carcinoma cells differentiate into parietal endoderm via an intermediate stage corresponding to primitive endoderm.
    Damjanov I; Zhu ZM; Andrews PW; Fenderson BA
    In Vivo; 1994; 8(6):967-73. PubMed ID: 7772748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.