These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 33269392)
21. Central Role of the Trehalose Biosynthesis Pathway in the Pathogenesis of Human Fungal Infections: Opportunities and Challenges for Therapeutic Development. Thammahong A; Puttikamonkul S; Perfect JR; Brennan RG; Cramer RA Microbiol Mol Biol Rev; 2017 Jun; 81(2):. PubMed ID: 28298477 [TBL] [Abstract][Full Text] [Related]
23. Nucleotide Excision Repair Protein Rad23 Regulates Cell Virulence Independent of Rad4 in Candida albicans. Feng J; Yao S; Dong Y; Hu J; Whiteway M; Feng J mSphere; 2020 Feb; 5(1):. PubMed ID: 32075883 [TBL] [Abstract][Full Text] [Related]
24. In vivo systematic analysis of Candida albicans Zn2-Cys6 transcription factors mutants for mice organ colonization. Vandeputte P; Ischer F; Sanglard D; Coste AT PLoS One; 2011; 6(10):e26962. PubMed ID: 22073120 [TBL] [Abstract][Full Text] [Related]
25. Phosphoregulation of Nap1 plays a role in septin ring dynamics and morphogenesis in Candida albicans. Huang ZX; Zhao P; Zeng GS; Wang YM; Sudbery I; Wang Y mBio; 2014 Feb; 5(1):e00915-13. PubMed ID: 24496790 [TBL] [Abstract][Full Text] [Related]
26. The protein kinase Ire1 impacts pathogenicity of Candida albicans by regulating homeostatic adaptation to endoplasmic reticulum stress. Sircaik S; Román E; Bapat P; Lee KK; Andes DR; Gow NAR; Nobile CJ; Pla J; Panwar SL Cell Microbiol; 2021 May; 23(5):e13307. PubMed ID: 33403715 [TBL] [Abstract][Full Text] [Related]
27. Goa1p of Candida albicans localizes to the mitochondria during stress and is required for mitochondrial function and virulence. Bambach A; Fernandes MP; Ghosh A; Kruppa M; Alex D; Li D; Fonzi WA; Chauhan N; Sun N; Agrellos OA; Vercesi AE; Rolfes RJ; Calderone R Eukaryot Cell; 2009 Nov; 8(11):1706-20. PubMed ID: 19717740 [TBL] [Abstract][Full Text] [Related]
28. Niche-specific activation of the oxidative stress response by the pathogenic fungus Candida albicans. Enjalbert B; MacCallum DM; Odds FC; Brown AJ Infect Immun; 2007 May; 75(5):2143-51. PubMed ID: 17339352 [TBL] [Abstract][Full Text] [Related]
29. Ke CL; Liao YT; Lin CH Virulence; 2021 Dec; 12(1):281-297. PubMed ID: 33427576 [No Abstract] [Full Text] [Related]
30. Critical roles of Dpb3-Dpb4 sub-complex of DNA polymerase epsilon in DNA replication, genome stability, and pathogenesis of Utkalaja BG; Patel SK; Sahu SR; Dutta A; Acharya N mBio; 2024 Oct; 15(10):e0122724. PubMed ID: 39207097 [TBL] [Abstract][Full Text] [Related]
31. Physiologic expression of the Candida albicans pescadillo homolog is required for virulence in a murine model of hematogenously disseminated candidiasis. Uppuluri P; Chaturvedi AK; Jani N; Pukkila-Worley R; Monteagudo C; Mylonakis E; Köhler JR; Lopez Ribot JL Eukaryot Cell; 2012 Dec; 11(12):1552-6. PubMed ID: 23104566 [TBL] [Abstract][Full Text] [Related]
32. Mitochondrial sorting and assembly machinery subunit Sam37 in Candida albicans: insight into the roles of mitochondria in fitness, cell wall integrity, and virulence. Qu Y; Jelicic B; Pettolino F; Perry A; Lo TL; Hewitt VL; Bantun F; Beilharz TH; Peleg AY; Lithgow T; Djordjevic JT; Traven A Eukaryot Cell; 2012 Apr; 11(4):532-44. PubMed ID: 22286093 [TBL] [Abstract][Full Text] [Related]
33. Ppg1, a PP2A-type protein phosphatase, controls filament extension and virulence in Candida albicans. Albataineh MT; Lazzell A; Lopez-Ribot JL; Kadosh D Eukaryot Cell; 2014 Dec; 13(12):1538-47. PubMed ID: 25326520 [TBL] [Abstract][Full Text] [Related]
34. Identification of the putative protein phosphatase gene PTC1 as a virulence-related gene using a silkworm model of Candida albicans infection. Hanaoka N; Takano Y; Shibuya K; Fugo H; Uehara Y; Niimi M Eukaryot Cell; 2008 Oct; 7(10):1640-8. PubMed ID: 18708562 [TBL] [Abstract][Full Text] [Related]
35. COS-l, a putative two-component histidine kinase of Candida albicans, is an in vivo virulence factor. Selitrennikoff CP; Alex L; Miller TK; Clemons KV; Simon MI; Stevens DA Med Mycol; 2001 Feb; 39(1):69-74. PubMed ID: 11270409 [TBL] [Abstract][Full Text] [Related]
36. Candida albicans VPS4 contributes differentially to epithelial and mucosal pathogenesis. Rane HS; Hardison S; Botelho C; Bernardo SM; Wormley F; Lee SA Virulence; 2014; 5(8):810-8. PubMed ID: 25483774 [TBL] [Abstract][Full Text] [Related]
37. Mnn10 Maintains Pathogenicity in Candida albicans by Extending α-1,6-Mannose Backbone to Evade Host Dectin-1 Mediated Antifungal Immunity. Zhang SQ; Zou Z; Shen H; Shen SS; Miao Q; Huang X; Liu W; Li LP; Chen SM; Yan L; Zhang JD; Zhao JJ; Xu GT; An MM; Jiang YY PLoS Pathog; 2016 May; 12(5):e1005617. PubMed ID: 27144456 [TBL] [Abstract][Full Text] [Related]
38. Blocking two-component signalling enhances Candida albicans virulence and reveals adaptive mechanisms that counteract sustained SAPK activation. Day AM; Smith DA; Ikeh MA; Haider M; Herrero-de-Dios CM; Brown AJ; Morgan BA; Erwig LP; MacCallum DM; Quinn J PLoS Pathog; 2017 Jan; 13(1):e1006131. PubMed ID: 28135328 [TBL] [Abstract][Full Text] [Related]
39. Limited role of secreted aspartyl proteinases Sap1 to Sap6 in Candida albicans virulence and host immune response in murine hematogenously disseminated candidiasis. Correia A; Lermann U; Teixeira L; Cerca F; Botelho S; da Costa RM; Sampaio P; Gärtner F; Morschhäuser J; Vilanova M; Pais C Infect Immun; 2010 Nov; 78(11):4839-49. PubMed ID: 20679440 [TBL] [Abstract][Full Text] [Related]
40. Candida albicans strain-dependent virulence and Rim13p-mediated filamentation in experimental keratomycosis. Mitchell BM; Wu TG; Jackson BE; Wilhelmus KR Invest Ophthalmol Vis Sci; 2007 Feb; 48(2):774-80. PubMed ID: 17251477 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]