These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 33269925)

  • 1. Enhanced Broadband Plasmonic Absorbers with Tunable Light Management on Flexible Tapered Metasurface.
    Hou G; Wang Z; Lu Z; Song H; Xu J; Chen K
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56178-56185. PubMed ID: 33269925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All-Metal Broadband Optical Absorbers Based on Block Copolymer Nanolithography.
    Hulkkonen H; Sah A; Niemi T
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42941-42947. PubMed ID: 30421602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Omnidirectional broadband metasurface absorber operating in visible to near-infrared regime.
    Wu S; Gu Y; Ye Y; Ye H; Chen L
    Opt Express; 2018 Aug; 26(17):21479-21489. PubMed ID: 30130854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic Nanostructures for Broadband Solar Absorption Based on Synergistic Effect of Multiple Absorption Mechanisms.
    Su J; Liu D; Sun L; Chen G; Ma C; Zhang Q; Li X
    Nanomaterials (Basel); 2022 Dec; 12(24):. PubMed ID: 36558309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An ultra-flexible plasmonic metamaterial film for efficient omnidirectional and broadband optical absorption.
    Zhang H; Feng L; Liang Y; Xu T
    Nanoscale; 2019 Jan; 11(2):437-443. PubMed ID: 30350835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broadening Bandwidths of Few-Layer Absorbers by Superimposing Two High-Loss Resonators.
    Wu D; Chen J
    Nanoscale Res Lett; 2021 Feb; 16(1):26. PubMed ID: 33566218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An elliptical nanoantenna array plasmonic metasurface for efficient solar energy harvesting.
    Ashrafi-Peyman Z; Jafargholi A; Moshfegh AZ
    Nanoscale; 2024 Feb; 16(7):3591-3605. PubMed ID: 38270171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monolayer Plasmonic Nanoframes as Large-Area, Broadband Metasurface Absorbers.
    Li Y; Tanriover I; Zhou W; Hadibrata W; Dereshgi SA; Samanta D; Aydin K; Mirkin CA
    Small; 2022 Aug; 18(33):e2201171. PubMed ID: 35859524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic Metasurface Absorber Based on Electro-Optic Substrate for Energy Harvesting.
    Muhammad N; Fu T; Liu Q; Tang X; Deng ZL; Ouyang Z
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30453662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broadband Near-Infrared Absorber Based on All Metallic Metasurface.
    Zhang K; Deng R; Song L; Zhang T
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31671708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers.
    Butun S; Aydin K
    Opt Express; 2014 Aug; 22(16):19457-68. PubMed ID: 25321029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wide-Angle Polarization-Independent Ultra-Broadband Absorber from Visible to Infrared.
    Liu J; Chen W; Zheng JC; Chen YS; Yang CF
    Nanomaterials (Basel); 2019 Dec; 10(1):. PubMed ID: 31861856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-Area Broadband Near-Perfect Absorption from a Thin Chalcogenide Film Coupled to Gold Nanoparticles.
    Cao T; Liu K; Lu L; Chui HC; Simpson RE
    ACS Appl Mater Interfaces; 2019 Feb; 11(5):5176-5182. PubMed ID: 30632371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation.
    Zhou L; Tan Y; Ji D; Zhu B; Zhang P; Xu J; Gan Q; Yu Z; Zhu J
    Sci Adv; 2016 Apr; 2(4):e1501227. PubMed ID: 27152335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MoS
    Sun Z; Huang F; Fu Y
    Appl Opt; 2020 Aug; 59(22):6671-6676. PubMed ID: 32749370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultra-broadband perfect absorber using triple-layer nanofilm in a long-wave near-infrared regime.
    Kuang K; Wang Q; Yuan X; Yu L; Liang Y; Zhang Y; Peng W
    Appl Opt; 2022 Sep; 61(26):7706-7712. PubMed ID: 36256371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadband Perfect Absorber Based on TiN-Nanocone Metasurface.
    Huo D; Zhang J; Wang Y; Wang C; Su H; Zhao H
    Nanomaterials (Basel); 2018 Jul; 8(7):. PubMed ID: 29966378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Broadband near-infrared metamaterial absorbers utilizing highly lossy metals.
    Ding F; Dai J; Chen Y; Zhu J; Jin Y; Bozhevolnyi SI
    Sci Rep; 2016 Dec; 6():39445. PubMed ID: 28000718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wide-angle and broadband solar absorber made using highly efficient large-area fabrication strategy.
    Hou W; Yang F; Chen Z; Dong J; Jiang S
    Opt Express; 2022 Jan; 30(3):4424-4433. PubMed ID: 35209680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical Study of an Efficient Solar Absorber Consisting of Metal Nanoparticles.
    Liu C; Zhang D; Liu Y; Wu D; Chen L; Ma R; Yu Z; Yu L; Ye H
    Nanoscale Res Lett; 2017 Nov; 12(1):601. PubMed ID: 29168003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.