These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 33270200)
1. Target Profiling of an Anticancer Drug Curcumin by an In Situ Chemical Proteomics Approach. Liu DD; Zou C; Zhang J; Gao P; Zhu Y; Meng Y; Ma N; Lv M; Xu C; Lin Q; Wang J Methods Mol Biol; 2021; 2213():147-161. PubMed ID: 33270200 [TBL] [Abstract][Full Text] [Related]
2. Drug Target Identification Using an iTRAQ-Based Quantitative Chemical Proteomics Approach-Based on a Target Profiling Study of Andrographolide. Wang J; Wong YK; Zhang J; Lee YM; Hua ZC; Shen HM; Lin Q Methods Enzymol; 2017; 586():291-309. PubMed ID: 28137568 [TBL] [Abstract][Full Text] [Related]
3. In situ Proteomic Profiling of Curcumin Targets in HCT116 Colon Cancer Cell Line. Wang J; Zhang J; Zhang CJ; Wong YK; Lim TK; Hua ZC; Liu B; Tannenbaum SR; Shen HM; Lin Q Sci Rep; 2016 Feb; 6():22146. PubMed ID: 26915414 [TBL] [Abstract][Full Text] [Related]
4. Isobaric Tag for Relative and Absolute Quantitation (iTRAQ)-Based Protein Profiling in Plants. Vélez-Bermúdez IC; Wen TN; Lan P; Schmidt W Methods Mol Biol; 2016; 1450():213-21. PubMed ID: 27424757 [TBL] [Abstract][Full Text] [Related]
5. Identification of cellular MMP substrates using quantitative proteomics: isotope-coded affinity tags (ICAT) and isobaric tags for relative and absolute quantification (iTRAQ). Butler GS; Dean RA; Morrison CJ; Overall CM Methods Mol Biol; 2010; 622():451-70. PubMed ID: 20135298 [TBL] [Abstract][Full Text] [Related]
6. Comparative analysis of Cu (I)-catalyzed alkyne-azide cycloaddition (CuAAC) and strain-promoted alkyne-azide cycloaddition (SPAAC) in O-GlcNAc proteomics. Li S; Zhu H; Wang J; Wang X; Li X; Ma C; Wen L; Yu B; Wang Y; Li J; Wang PG Electrophoresis; 2016 Jun; 37(11):1431-6. PubMed ID: 26853435 [TBL] [Abstract][Full Text] [Related]
8. Performance of isobaric and isotopic labeling in quantitative plant proteomics. Nogueira FC; Palmisano G; Schwämmle V; Campos FA; Larsen MR; Domont GB; Roepstorff P J Proteome Res; 2012 May; 11(5):3046-52. PubMed ID: 22452248 [TBL] [Abstract][Full Text] [Related]
9. Cell-permeable probe for identification and imaging of sialidases. Tsai CS; Yen HY; Lin MI; Tsai TI; Wang SY; Huang WI; Hsu TL; Cheng YS; Fang JM; Wong CH Proc Natl Acad Sci U S A; 2013 Feb; 110(7):2466-71. PubMed ID: 23359711 [TBL] [Abstract][Full Text] [Related]
10. Proteomic Profiling of De Novo Protein Synthesis in Starvation-Induced Autophagy Using Bioorthogonal Noncanonical Amino Acid Tagging. Zhang J; Wang J; Lee YM; Lim TK; Lin Q; Shen HM Methods Enzymol; 2017; 588():41-59. PubMed ID: 28237112 [TBL] [Abstract][Full Text] [Related]
11. Quantitative characterization of glycoproteins in neurodegenerative disorders using iTRAQ. Shi M; Hwang H; Zhang J Methods Mol Biol; 2013; 951():279-96. PubMed ID: 23296538 [TBL] [Abstract][Full Text] [Related]
12. Trends in the Design of New Isobaric Labeling Reagents for Quantitative Proteomics. Bąchor R; Waliczek M; Stefanowicz P; Szewczuk Z Molecules; 2019 Feb; 24(4):. PubMed ID: 30781343 [TBL] [Abstract][Full Text] [Related]
13. Quantitative chemical proteomics for identifying candidate drug targets. Oda Y; Owa T; Sato T; Boucher B; Daniels S; Yamanaka H; Shinohara Y; Yokoi A; Kuromitsu J; Nagasu T Anal Chem; 2003 May; 75(9):2159-65. PubMed ID: 12720356 [TBL] [Abstract][Full Text] [Related]
14. Improved reporter ion assignment of raw isobaric stable isotope labeled liquid chromatography/matrix-assisted laser desorption/ionization tandem time-of-flight mass spectral data for quantitative proteomics. Jakoby T; Tholey A; van den Berg BH Rapid Commun Mass Spectrom; 2012 Dec; 26(23):2777-85. PubMed ID: 23124669 [TBL] [Abstract][Full Text] [Related]
15. Analysis of the plasma proteome using iTRAQ and TMT-based Isobaric labeling. Moulder R; Bhosale SD; Goodlett DR; Lahesmaa R Mass Spectrom Rev; 2018 Sep; 37(5):583-606. PubMed ID: 29120501 [TBL] [Abstract][Full Text] [Related]
16. Biomarker verification using selected reaction monitoring and shotgun proteomics. Castro-Gamero AM; Izumi C; Rosa JC Methods Mol Biol; 2014; 1156():295-306. PubMed ID: 24791997 [TBL] [Abstract][Full Text] [Related]
17. In Situ Click Reaction Coupled with Quantitative Proteomics for Identifying Protein Targets of Catechol Estrogens. Liang HC; Liu YC; Chen H; Ku MC; Do QT; Wang CY; Tzeng SF; Chen SH J Proteome Res; 2018 Aug; 17(8):2590-2599. PubMed ID: 29897771 [TBL] [Abstract][Full Text] [Related]
19. Two Birds with One Stone: Parallel Quantification of Proteome and Phosphoproteome Using iTRAQ. Solari FA; Kollipara L; Sickmann A; Zahedi RP Methods Mol Biol; 2016; 1394():25-41. PubMed ID: 26700039 [TBL] [Abstract][Full Text] [Related]
20. Profiling the Protein Targets of Unmodified Bio-Active Molecules with Drug Affinity Responsive Target Stability and Liquid Chromatography/Tandem Mass Spectrometry. Hwang HY; Kim TY; Szász MA; Dome B; Malm J; Marko-Varga G; Kwon HJ Proteomics; 2020 May; 20(9):e1900325. PubMed ID: 31926115 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]