These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 33270218)

  • 1. Modelling group movement with behaviour switching in continuous time.
    Niu M; Frost F; Milner JE; Skarin A; Blackwell PG
    Biometrics; 2022 Mar; 78(1):286-299. PubMed ID: 33270218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling interdependent animal movement in continuous time.
    Niu M; Blackwell PG; Skarin A
    Biometrics; 2016 Jun; 72(2):315-24. PubMed ID: 26812666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting animal home-range structure and transitions using a multistate Ornstein-Uhlenbeck biased random walk.
    Breed GA; Golson EA; Tinker MT
    Ecology; 2017 Jan; 98(1):32-47. PubMed ID: 27893946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zero-Inflated Regime-Switching Stochastic Differential Equation Models for Highly Unbalanced Multivariate, Multi-Subject Time-Series Data.
    Lu ZH; Chow SM; Ram N; Cole PM
    Psychometrika; 2019 Jun; 84(2):611-645. PubMed ID: 30859367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inferring ancestral states without assuming neutrality or gradualism using a stable model of continuous character evolution.
    Elliot MG; Mooers AØ
    BMC Evol Biol; 2014 Nov; 14():226. PubMed ID: 25427971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Inverse First Passage time method for a two dimensional Ornstein Uhlenbeck process with neuronal application.
    Civallero A; Zucca C
    Math Biosci Eng; 2019 Sep; 16(6):8162-8178. PubMed ID: 31698661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brownian motion in non-equilibrium systems and the Ornstein-Uhlenbeck stochastic process.
    Donado F; Moctezuma RE; López-Flores L; Medina-Noyola M; Arauz-Lara JL
    Sci Rep; 2017 Oct; 7(1):12614. PubMed ID: 28974759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast Bayesian inference of optical trap stiffness and particle diffusion.
    Bera S; Paul S; Singh R; Ghosh D; Kundu A; Banerjee A; Adhikari R
    Sci Rep; 2017 Jan; 7():41638. PubMed ID: 28139705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abrupt motion tracking via intensively adaptive Markov-chain Monte Carlo sampling.
    Zhou X; Lu Y; Lu J; Zhou J
    IEEE Trans Image Process; 2012 Feb; 21(2):789-801. PubMed ID: 21937350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast Bayesian inference of the multivariate Ornstein-Uhlenbeck process.
    Singh R; Ghosh D; Adhikari R
    Phys Rev E; 2018 Jul; 98(1-1):012136. PubMed ID: 30110802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gammaherpesvirus in Cervid Species from Norway: Characterization of a New Virus in Wild and Semi-Domesticated Eurasian Tundra Reindeer (
    das Neves CG; Sacristán C; Madslien K; Tryland M
    Viruses; 2020 Aug; 12(8):. PubMed ID: 32796534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of OU processes to modelling temporal dynamics of the human microbiome, and calculating optimal sampling schemes.
    Kenney T; Gao J; Gu H
    BMC Bioinformatics; 2020 Oct; 21(1):450. PubMed ID: 33045987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Joint estimation over multiple individuals improves behavioural state inference from animal movement data.
    Jonsen I
    Sci Rep; 2016 Feb; 6():20625. PubMed ID: 26853261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmacometrics models with hidden Markovian dynamics.
    Lavielle M
    J Pharmacokinet Pharmacodyn; 2018 Feb; 45(1):91-105. PubMed ID: 28861695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beyond Brownian Motion and the Ornstein-Uhlenbeck Process: Stochastic Diffusion Models for the Evolution of Quantitative Characters.
    Blomberg SP; Rathnayake SI; Moreau CM
    Am Nat; 2020 Feb; 195(2):145-165. PubMed ID: 32017624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 'You shall not pass!': quantifying barrier permeability and proximity avoidance by animals.
    Beyer HL; Gurarie E; Börger L; Panzacchi M; Basille M; Herfindal I; Van Moorter B; R Lele S; Matthiopoulos J
    J Anim Ecol; 2016 Jan; 85(1):43-53. PubMed ID: 25056207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monocular human motion tracking by using DE-MC particle filter.
    Du M; Nan X; Guan L
    IEEE Trans Image Process; 2013 Oct; 22(10):3852-65. PubMed ID: 23686951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of reindeer fine-scale foraging behaviour using tri-axial accelerometer data.
    Rautiainen H; Alam M; Blackwell PG; Skarin A
    Mov Ecol; 2022 Sep; 10(1):40. PubMed ID: 36127747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stochastic dynamic models and Chebyshev splines.
    Fan R; Zhu B; Wang Y
    Can J Stat; 2014 Dec; 42(4):610-634. PubMed ID: 26045632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Ornstein-Uhlenbeck model for decision time in cognitive tasks: an example of control of nonlinear network dynamics.
    Heath RA
    Psychol Res; 2000; 63(2):183-91. PubMed ID: 10946592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.