BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 33270515)

  • 1. Voluntary activation of knee extensor muscles with transcranial magnetic stimulation.
    Nuzzo JL; Kennedy DS; Finn HT; Taylor JL
    J Appl Physiol (1985); 2021 Mar; 130(3):589-604. PubMed ID: 33270515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of voluntary activation of fresh and fatigued human muscles using transcranial magnetic stimulation.
    Todd G; Taylor JL; Gandevia SC
    J Physiol; 2003 Sep; 551(Pt 2):661-71. PubMed ID: 12909682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortical voluntary activation of the human knee extensors can be reliably estimated using transcranial magnetic stimulation.
    Sidhu SK; Bentley DJ; Carroll TJ
    Muscle Nerve; 2009 Feb; 39(2):186-96. PubMed ID: 19034956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcranial magnetic stimulation intensity affects exercise-induced changes in corticomotoneuronal excitability and inhibition and voluntary activation.
    Bachasson D; Temesi J; Gruet M; Yokoyama K; Rupp T; Millet GY; Verges S
    Neuroscience; 2016 Feb; 314():125-33. PubMed ID: 26642805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of voluntary activation of the back muscles using transcranial magnetic stimulation.
    Lagan J; Lang P; Strutton PH
    Clin Neurophysiol; 2008 Dec; 119(12):2839-45. PubMed ID: 18976953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voluntary activation does not differ when using two different methods to determine transcranial magnetic stimulator output.
    Bruce CD; Magnuson JR; McNeil CJ
    J Neurophysiol; 2023 Oct; 130(4):925-930. PubMed ID: 37671448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maximal Voluntary Activation of the Elbow Flexors Is under Predicted by Transcranial Magnetic Stimulation Compared to Motor Point Stimulation Prior to and Following Muscle Fatigue.
    Cadigan EWJ; Collins BW; Philpott DTG; Kippenhuck G; Brenton M; Button DC
    Front Physiol; 2017; 8():707. PubMed ID: 28979211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cortical voluntary activation can be reliably measured in human wrist extensors using transcranial magnetic stimulation.
    Lee M; Gandevia SC; Carroll TJ
    Clin Neurophysiol; 2008 May; 119(5):1130-8. PubMed ID: 18308630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of transcranial magnetic stimulation to assess relaxation rates in unfatigued and fatigued knee-extensor muscles.
    Vernillo G; Khassetarash A; Millet GY; Temesi J
    Exp Brain Res; 2021 Jan; 239(1):205-216. PubMed ID: 33140192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of voluntary activation based on transcranial magnetic stimulation over the motor cortex.
    Todd G; Taylor JL; Gandevia SC
    J Appl Physiol (1985); 2016 Sep; 121(3):678-86. PubMed ID: 27418687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motoneuron excitability of the quadriceps decreases during a fatiguing submaximal isometric contraction.
    Finn HT; Rouffet DM; Kennedy DS; Green S; Taylor JL
    J Appl Physiol (1985); 2018 Apr; 124(4):970-979. PubMed ID: 29357479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of fatigue on corticospinal excitability of the human knee extensors.
    Kennedy DS; McNeil CJ; Gandevia SC; Taylor JL
    Exp Physiol; 2016 Dec; 101(12):1552-1564. PubMed ID: 27652591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Central fatigue assessed by transcranial magnetic stimulation in ultratrail running.
    Temesi J; Rupp T; Martin V; Arnal PJ; FĂ©asson L; Verges S; Millet GY
    Med Sci Sports Exerc; 2014 Jun; 46(6):1166-75. PubMed ID: 24195865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resting and active motor thresholds versus stimulus-response curves to determine transcranial magnetic stimulation intensity in quadriceps femoris.
    Temesi J; Gruet M; Rupp T; Verges S; Millet GY
    J Neuroeng Rehabil; 2014 Mar; 11():40. PubMed ID: 24655366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intensity-dependent alterations in the excitability of cortical and spinal projections to the knee extensors during isometric and locomotor exercise.
    Weavil JC; Sidhu SK; Mangum TS; Richardson RS; Amann M
    Am J Physiol Regul Integr Comp Physiol; 2015 Jun; 308(12):R998-1007. PubMed ID: 25876651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of shoulder position on motor evoked and maximal muscle compound action potentials of the biceps brachii.
    Collins BW; Button DC
    Neurosci Lett; 2018 Feb; 665():206-211. PubMed ID: 29229395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reliability of transcranial magnetic stimulation-evoked responses on knee extensor muscles during cycling.
    Zhang J; McClean ZJ; Khaledi N; Morgan SJ; Millet GY; Aboodarda SJ
    Exp Brain Res; 2024 Jul; 242(7):1681-1695. PubMed ID: 38806709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. People with multiple sclerosis have reduced TMS-evoked motor cortical output compared with healthy individuals during fatiguing submaximal contractions.
    Brotherton EJ; Sabapathy S; Mckeown DJ; Kavanagh JJ
    J Neurophysiol; 2022 Jul; 128(1):105-117. PubMed ID: 35675447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of motor cortex stimulation to measure simultaneously the changes in dynamic muscle properties and voluntary activation in human muscles.
    Todd G; Taylor JL; Butler JE; Martin PG; Gorman RB; Gandevia SC
    J Appl Physiol (1985); 2007 May; 102(5):1756-66. PubMed ID: 17218428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voluntary activation of human knee extensors measured using transcranial magnetic stimulation.
    Goodall S; Romer LM; Ross EZ
    Exp Physiol; 2009 Sep; 94(9):995-1004. PubMed ID: 19561142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.