These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 33270660)

  • 1. In vitro comparison of performance including imposed work of breathing of CPAP systems used in low-resource settings.
    Heenan M; Rojas JD; Oden ZM; Richards-Kortum R
    PLoS One; 2020; 15(12):e0242590. PubMed ID: 33270660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Infant CPAP for low-income countries: An experimental comparison of standard bubble CPAP and the Pumani system.
    Falk M; Donaldsson S; Drevhammar T
    PLoS One; 2018; 13(5):e0196683. PubMed ID: 29768512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of imposed resistance on tidal volume with 5 neonatal nasal continuous positive airway pressure systems.
    Cook SE; Fedor KL; Chatburn RL
    Respir Care; 2010 May; 55(5):544-8. PubMed ID: 20420723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of a Low-Cost Bubble CPAP System Designed for Resource-Limited Settings.
    Bennett DJ; Carroll RW; Kacmarek RM
    Respir Care; 2018 Apr; 63(4):395-403. PubMed ID: 29382795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Return of neonatal CPAP resistance - the Medijet device family examined using in vitro flow simulations.
    Falk M; Donaldsson S; Jonsson B; Drevhammar T
    Acta Paediatr; 2017 Nov; 106(11):1760-1766. PubMed ID: 28715132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of nasal continuous positive airway pressure delivered by seven ventilators using simulated neonatal breathing.
    Drevhammar T; Nilsson K; Zetterström H; Jonsson B
    Pediatr Crit Care Med; 2013 May; 14(4):e196-201. PubMed ID: 23439462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Work of breathing during constant- and variable-flow nasal continuous positive airway pressure in preterm neonates.
    Pandit PB; Courtney SE; Pyon KH; Saslow JG; Habib RH
    Pediatrics; 2001 Sep; 108(3):682-5. PubMed ID: 11533336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volume Oscillations Delivered to a Lung Model Using 4 Different Bubble CPAP Systems.
    Poli JA; Richardson CP; DiBlasi RM
    Respir Care; 2015 Mar; 60(3):371-81. PubMed ID: 25425706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Basic principles of neonatal bubble CPAP: effects on CPAP delivery and imposed work of breathing when altering the original design.
    Baldursdottir S; Falk M; Donaldsson S; Jonsson B; Drevhammar T
    Arch Dis Child Fetal Neonatal Ed; 2020 Sep; 105(5):550-554. PubMed ID: 32047029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imposed Work of Breathing for Flow Meters with In-Line versus Flow-Through Technique during Simulated Neonatal Breathing.
    Donaldsson S; Falk M; Jonsson B; Drevhammar T
    PLoS One; 2015; 10(7):e0133432. PubMed ID: 26192188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying ventilator unloading in CPAP ventilation.
    Guy EFS; Chase JG; Knopp JL; Shaw GM
    Comput Biol Med; 2022 Mar; 142():105225. PubMed ID: 35032739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of seven infant continuous positive airway pressure systems using simulated neonatal breathing.
    Drevhammar T; Nilsson K; Zetterström H; Jonsson B
    Pediatr Crit Care Med; 2012 Mar; 13(2):e113-9. PubMed ID: 21946854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decreased imposed work with a new nasal continuous positive airway pressure device.
    Klausner JF; Lee AY; Hutchison AA
    Pediatr Pulmonol; 1996 Sep; 22(3):188-94. PubMed ID: 8893258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of HFNC, bubble CPAP and SiPAP on aerosol delivery in neonates: An in-vitro study.
    Sunbul FS; Fink JB; Harwood R; Sheard MM; Zimmerman RD; Ari A
    Pediatr Pulmonol; 2015 Nov; 50(11):1099-106. PubMed ID: 25491434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bubble CPAP devices for infants and children in resource-limited settings: review of the literature.
    Won A; Suarez-Rebling D; Baker AL; Burke TF; Nelson BD
    Paediatr Int Child Health; 2019 Aug; 39(3):168-176. PubMed ID: 30375281
    [No Abstract]   [Full Text] [Related]  

  • 16. Pressure stability with CPAP devices: A bench evaluation.
    Louis B; Leroux K; Boucherie M; Isabey D; Grillier-Lanoir V; Fauroux B; Lofaso F
    Sleep Med; 2010 Jan; 11(1):96-9. PubMed ID: 19892594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tidal breathing in preterm infants receiving and weaning from continuous positive airway pressure.
    Pickerd N; Williams EM; Watkins WJ; Kotecha S
    J Pediatr; 2014 May; 164(5):1058-1063.e1. PubMed ID: 24518163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating the Effect of Flow and Interface Type on Pressures Delivered With Bubble CPAP in a Simulated Model.
    Bailes SA; Firestone KS; Dunn DK; McNinch NL; Brown MF; Volsko TA
    Respir Care; 2016 Mar; 61(3):333-9. PubMed ID: 26534997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of a Bubble CPAP System for Low Resource Settings.
    L Dundek M; Ng EK; M Brazil A; DiBlasi RM; Poli JA; Burke TF
    Respir Care; 2021 Oct; 66(10):1572-1581. PubMed ID: 33824173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of condensate in the exhalation limb of neonatal circuits on airway pressure during bubble CPAP.
    Youngquist TM; Richardson CP; Diblasi RM
    Respir Care; 2013 Nov; 58(11):1840-6. PubMed ID: 23481441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.