BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 33270841)

  • 1. CRISPR screen identifies genes that sensitize AML cells to double-negative T-cell therapy.
    Soares F; Chen B; Lee JB; Ahmed M; Ly D; Tin E; Kang H; Zeng Y; Akhtar N; Minden MD; He HH; Zhang L
    Blood; 2021 Apr; 137(16):2171-2181. PubMed ID: 33270841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting chemotherapy-resistant leukemia by combining DNT cellular therapy with conventional chemotherapy.
    Chen B; Lee JB; Kang H; Minden MD; Zhang L
    J Exp Clin Cancer Res; 2018 Apr; 37(1):88. PubMed ID: 29690909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Allogeneic Human Double Negative T Cells as a Novel Immunotherapy for Acute Myeloid Leukemia and Its Underlying Mechanisms.
    Lee J; Minden MD; Chen WC; Streck E; Chen B; Kang H; Arruda A; Ly D; Der SD; Kang S; Achita P; D'Souza C; Li Y; Childs RW; Dick JE; Zhang L
    Clin Cancer Res; 2018 Jan; 24(2):370-382. PubMed ID: 29074605
    [No Abstract]   [Full Text] [Related]  

  • 4. Anti-leukemia effect of ex vivo expanded DNT cells from AML patients: a potential novel autologous T-cell adoptive immunotherapy.
    Merims S; Li X; Joe B; Dokouhaki P; Han M; Childs RW; Wang ZY; Gupta V; Minden MD; Zhang L
    Leukemia; 2011 Sep; 25(9):1415-22. PubMed ID: 21566657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo efficacy of the recombinant anti-CD64 immunotoxin H22(scFv)-ETA' in a human acute myeloid leukemia xenograft tumor model.
    Tur MK; Huhn M; Jost E; Thepen T; Brümmendorf TH; Barth S
    Int J Cancer; 2011 Sep; 129(5):1277-82. PubMed ID: 21077160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective targeting of human lymphokine-activated killer cells by CD3 monoclonal antibody against the interferon-inducible high-affinity Fc gamma RI receptor (CD64) on autologous acute myeloid leukemic blast cells.
    Notter M; Ludwig WD; Bremer S; Thiel E
    Blood; 1993 Nov; 82(10):3113-24. PubMed ID: 7693036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting leukemia-specific dependence on the de novo purine synthesis pathway.
    Yamauchi T; Miyawaki K; Semba Y; Takahashi M; Izumi Y; Nogami J; Nakao F; Sugio T; Sasaki K; Pinello L; Bauer DE; Bamba T; Akashi K; Maeda T
    Leukemia; 2022 Feb; 36(2):383-393. PubMed ID: 34344987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Double-negative T cells utilize a TNFα-JAK1-ICAM-1 cytotoxic axis against acute myeloid leukemia.
    Tin E; Lee J; Khatri I; Na Y; Minden MD; Zhang L
    Blood Adv; 2024 Mar; ():. PubMed ID: 38547431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Exploration of novel therapeutic targets in acute myeloid leukemia via genome-wide CRISPR screening].
    Yamauchi T
    Rinsho Ketsueki; 2019; 60(7):810-817. PubMed ID: 31391371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting Mitochondrial Structure Sensitizes Acute Myeloid Leukemia to Venetoclax Treatment.
    Chen X; Glytsou C; Zhou H; Narang S; Reyna DE; Lopez A; Sakellaropoulos T; Gong Y; Kloetgen A; Yap YS; Wang E; Gavathiotis E; Tsirigos A; Tibes R; Aifantis I
    Cancer Discov; 2019 Jul; 9(7):890-909. PubMed ID: 31048321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human double negative T cells target lung cancer via ligand-dependent mechanisms that can be enhanced by IL-15.
    Yao J; Ly D; Dervovic D; Fang L; Lee JB; Kang H; Wang YH; Pham NA; Pan H; Tsao MS; Zhang L
    J Immunother Cancer; 2019 Jan; 7(1):17. PubMed ID: 30670085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome wide CRISPR screening reveals a role for sialylation in the tumorigenesis and chemoresistance of acute myeloid leukemia cells.
    Lee DH; Kang SH; Choi DS; Ko M; Choi E; Ahn H; Min H; Oh SJ; Lee MS; Park Y; Jin HS
    Cancer Lett; 2021 Jul; 510():37-47. PubMed ID: 33872695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Therapeutic Target Discovery Using High-Throughput Genetic Screens in Acute Myeloid Leukemia.
    Liu Q; Garcia M; Wang S; Chen CW
    Cells; 2020 Aug; 9(8):. PubMed ID: 32806592
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Guo X; Mahlakõiv T; Ye Q; Somanchi S; He S; Rana H; DiFiglia A; Gleason J; van der Touw W; Hariri R; Zhang X
    J Immunother Cancer; 2021 Mar; 9(3):. PubMed ID: 33741730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human Vγ9Vδ2 T cells specifically recognize and kill acute myeloid leukemic blasts.
    Gertner-Dardenne J; Castellano R; Mamessier E; Garbit S; Kochbati E; Etienne A; Charbonnier A; Collette Y; Vey N; Olive D
    J Immunol; 2012 May; 188(9):4701-8. PubMed ID: 22467661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The CD226-ERK1/2-LAMP1 pathway is an important mechanism for Vγ9Vδ2 T cell cytotoxicity against chemotherapy-resistant acute myeloid leukemia blasts and leukemia stem cells.
    Wu K; Wang LM; Liu M; Xiu Y; Hu Y; Fu S; Huang H; Xu B; Xiao H
    Cancer Sci; 2021 Aug; 112(8):3233-3242. PubMed ID: 34107135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting of folate receptor β on acute myeloid leukemia blasts with chimeric antigen receptor-expressing T cells.
    Lynn RC; Poussin M; Kalota A; Feng Y; Low PS; Dimitrov DS; Powell DJ
    Blood; 2015 May; 125(22):3466-76. PubMed ID: 25887778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comprehensive analysis of primary acute myeloid leukemia identifies biomarkers predicting susceptibility to human allogeneic Vγ9Vδ2 T cells.
    Gundermann S; Klinker E; Kimmel B; Flierl U; Wilhelm M; Einsele H; Kunzmann V
    J Immunother; 2014; 37(6):321-30. PubMed ID: 24911793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preclinical Evaluation of CD64 As a Potential Target For CAR-T-cell Therapy For Acute Myeloid Leukemia.
    Sun X; Wang G; Zuo S; Niu Q; Chen X; Feng X
    J Immunother; 2022 Feb-Mar 01; 45(2):67-77. PubMed ID: 34864808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A CRISPR Dropout Screen Identifies Genetic Vulnerabilities and Therapeutic Targets in Acute Myeloid Leukemia.
    Tzelepis K; Koike-Yusa H; De Braekeleer E; Li Y; Metzakopian E; Dovey OM; Mupo A; Grinkevich V; Li M; Mazan M; Gozdecka M; Ohnishi S; Cooper J; Patel M; McKerrell T; Chen B; Domingues AF; Gallipoli P; Teichmann S; Ponstingl H; McDermott U; Saez-Rodriguez J; Huntly BJP; Iorio F; Pina C; Vassiliou GS; Yusa K
    Cell Rep; 2016 Oct; 17(4):1193-1205. PubMed ID: 27760321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.