BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

898 related articles for article (PubMed ID: 33271069)

  • 61. Transcriptional landscape changes during human embryonic stem cell derivation.
    Warrier S; Taelman J; Tilleman L; Van der Jeught M; Duggal G; Lierman S; Popovic M; Van Soom A; Peelman L; Van Nieuwerburgh F; Deforce D; Chuva de Sousa Lopes SM; De Sutter P; Heindryckx B
    Mol Hum Reprod; 2018 Nov; 24(11):543-555. PubMed ID: 30239859
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Coordination of germ layer lineage choice by TET1 during primed pluripotency.
    Luo X; van der Veer BK; Sun L; Bartoccetti M; Boretto M; Vankelecom H; Khoueiry R; Koh KP
    Genes Dev; 2020 Apr; 34(7-8):598-618. PubMed ID: 32115407
    [TBL] [Abstract][Full Text] [Related]  

  • 63. [Expression patterns of germ line specific genes in mouse and human pluripotent stem cells are associated with regulation of ground and primed state of pluripotency].
    Gordeev OF; Lifantseva NV; Khaĭdukov SV
    Ontogenez; 2011; 42(6):403-24. PubMed ID: 22288104
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Heterogeneity in Epiblast Stem Cells.
    Jouneau A
    Adv Exp Med Biol; 2019; 1123():5-17. PubMed ID: 31016592
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Clonal isolation of an intermediate pluripotent stem cell state.
    Chang KH; Li M
    Stem Cells; 2013 May; 31(5):918-27. PubMed ID: 23341219
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Capturing Human Naïve Pluripotency in the Embryo and in the Dish.
    Zimmerlin L; Park TS; Zambidis ET
    Stem Cells Dev; 2017 Aug; 26(16):1141-1161. PubMed ID: 28537488
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Human naive epiblast cells possess unrestricted lineage potential.
    Guo G; Stirparo GG; Strawbridge SE; Spindlow D; Yang J; Clarke J; Dattani A; Yanagida A; Li MA; Myers S; Özel BN; Nichols J; Smith A
    Cell Stem Cell; 2021 Jun; 28(6):1040-1056.e6. PubMed ID: 33831366
    [TBL] [Abstract][Full Text] [Related]  

  • 68. WNT/β-catenin signaling affects cell lineage and pluripotency-specific gene expression in bovine blastocysts: prospects for bovine embryonic stem cell derivation.
    Madeja ZE; Hryniewicz K; Orsztynowicz M; Pawlak P; Perkowska A
    Stem Cells Dev; 2015 Oct; 24(20):2437-54. PubMed ID: 26119137
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Direct repression of Nanog and Oct4 by OTX2 modulates the contribution of epiblast-derived cells to germline and somatic lineage.
    Di Giovannantonio LG; Acampora D; Omodei D; Nigro V; Barba P; Barbieri E; Chambers I; Simeone A
    Development; 2021 May; 148(10):. PubMed ID: 33999993
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A novel nodal enhancer dependent on pluripotency factors and smad2/3 signaling conditions a regulatory switch during epiblast maturation.
    Papanayotou C; Benhaddou A; Camus A; Perea-Gomez A; Jouneau A; Mezger V; Langa F; Ott S; Sabéran-Djoneidi D; Collignon J
    PLoS Biol; 2014 Jun; 12(6):e1001890. PubMed ID: 24960041
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Embryonic germ cells from mice and rats exhibit properties consistent with a generic pluripotent ground state.
    Leitch HG; Blair K; Mansfield W; Ayetey H; Humphreys P; Nichols J; Surani MA; Smith A
    Development; 2010 Jul; 137(14):2279-87. PubMed ID: 20519324
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Primate embryogenesis predicts the hallmarks of human naïve pluripotency.
    Boroviak T; Nichols J
    Development; 2017 Jan; 144(2):175-186. PubMed ID: 28096211
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Induction of Human Naïve Pluripotency Using Chemical Resetting.
    Rugg-Gunn PJ
    Methods Mol Biol; 2022; 2416():29-37. PubMed ID: 34870828
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The Epiblast and Pluripotent Stem Cell Lines.
    Kondoh H
    Results Probl Cell Differ; 2024; 72():3-9. PubMed ID: 38509249
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Naive Pluripotent Stem Cells Derived Directly from Isolated Cells of the Human Inner Cell Mass.
    Guo G; von Meyenn F; Santos F; Chen Y; Reik W; Bertone P; Smith A; Nichols J
    Stem Cell Reports; 2016 Apr; 6(4):437-446. PubMed ID: 26947977
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Lipid Deprivation Induces a Stable, Naive-to-Primed Intermediate State of Pluripotency in Human PSCs.
    Cornacchia D; Zhang C; Zimmer B; Chung SY; Fan Y; Soliman MA; Tchieu J; Chambers SM; Shah H; Paull D; Konrad C; Vincendeau M; Noggle SA; Manfredi G; Finley LWS; Cross JR; Betel D; Studer L
    Cell Stem Cell; 2019 Jul; 25(1):120-136.e10. PubMed ID: 31155483
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Production and Analysis of Human Primordial Germ Cell-Like Cells.
    Mitsunaga S; Shioda K; Hanna JH; Isselbacher KJ; Shioda T
    Methods Mol Biol; 2021; 2195():125-145. PubMed ID: 32852762
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A Mass Spectrometry Survey of Chromatin-Associated Proteins in Pluripotency and Early Lineage Commitment.
    van Mierlo G; Wester RA; Marks H
    Proteomics; 2019 Jul; 19(14):e1900047. PubMed ID: 31219242
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Cooperative genetic networks drive embryonic stem cell transition from naïve to formative pluripotency.
    Lackner A; Sehlke R; Garmhausen M; Giuseppe Stirparo G; Huth M; Titz-Teixeira F; van der Lelij P; Ramesmayer J; Thomas HF; Ralser M; Santini L; Galimberti E; Sarov M; Stewart AF; Smith A; Beyer A; Leeb M
    EMBO J; 2021 Apr; 40(8):e105776. PubMed ID: 33687089
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Pluripotency Surveillance by Myc-Driven Competitive Elimination of Differentiating Cells.
    Díaz-Díaz C; Fernandez de Manuel L; Jimenez-Carretero D; Montoya MC; Clavería C; Torres M
    Dev Cell; 2017 Sep; 42(6):585-599.e4. PubMed ID: 28919206
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 45.