These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 33271144)

  • 1. An external magnetic field moderating Cr(VI) stress for simultaneous enhanced acetate production and Cr(VI) removal in microbial electrosynthesis system.
    Sun S; Huang L; Song X; Zhou P
    Environ Res; 2021 Feb; 193():110550. PubMed ID: 33271144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the interdependence of strain of electrotroph, cathode potential and initial Cu(II) concentration for simultaneous Cu(II) removal and acetate production in microbial electrosynthesis systems.
    Hou J; Huang L; Zhou P; Qian Y; Li N
    Chemosphere; 2020 Mar; 243():125317. PubMed ID: 31722262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrosynthesis of acetate from inorganic carbon (HCO
    Hou X; Huang L; Zhou P; Tian F; Tao Y; Li Puma G
    J Hazard Mater; 2019 Jun; 371():463-473. PubMed ID: 30875574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological chromium(VI) reduction in the cathode of a microbial fuel cell.
    Tandukar M; Huber SJ; Onodera T; Pavlostathis SG
    Environ Sci Technol; 2009 Nov; 43(21):8159-65. PubMed ID: 19924938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction of Cu(II) and simultaneous production of acetate from inorganic carbon by Serratia Marcescens biofilms and plankton cells in microbial electrosynthesis systems.
    Qian Y; Huang L; Zhou P; Tian F; Puma GL
    Sci Total Environ; 2019 May; 666():114-125. PubMed ID: 30798222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial electrosynthesis feasibility evaluation at high bicarbonate concentrations with enriched homoacetogenic biocathode.
    Mohanakrishna G; Abu Reesh IM; Vanbroekhoven K; Pant D
    Sci Total Environ; 2020 May; 715():137003. PubMed ID: 32023516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioelectrochemical Chromium(VI) Removal in Plant-Microbial Fuel Cells.
    Habibul N; Hu Y; Wang YK; Chen W; Yu HQ; Sheng GP
    Environ Sci Technol; 2016 Apr; 50(7):3882-9. PubMed ID: 26962848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-efficient acetate production from carbon dioxide using a bioanode microbial electrosynthesis system with bipolar membrane.
    Xiang Y; Liu G; Zhang R; Lu Y; Luo H
    Bioresour Technol; 2017 Jun; 233():227-235. PubMed ID: 28282609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene/biofilm composites for enhancement of hexavalent chromium reduction and electricity production in a biocathode microbial fuel cell.
    Song TS; Jin Y; Bao J; Kang D; Xie J
    J Hazard Mater; 2016 Nov; 317():73-80. PubMed ID: 27262274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal and desorption of chromium in synthetic effluent by a mixed culture in a bioreactor with a magnetic field.
    Dias RM; Silva JG; Cardoso VL; de Resende MM
    J Environ Sci (China); 2020 May; 91():151-159. PubMed ID: 32172963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell.
    Huang L; Chen J; Quan X; Yang F
    Bioprocess Biosyst Eng; 2010 Oct; 33(8):937-45. PubMed ID: 20217142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purposely Designed Hierarchical Porous Electrodes for High Rate Microbial Electrosynthesis of Acetate from Carbon Dioxide.
    Flexer V; Jourdin L
    Acc Chem Res; 2020 Feb; 53(2):311-321. PubMed ID: 31990521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous removal of hexavalent chromium and o-dichlorobenzene by isolated Serratia marcescens ZD-9.
    Xu W; Duan G; Liu Y; Zeng G; Li X; Liang J; Zhang W
    Biodegradation; 2018 Dec; 29(6):605-616. PubMed ID: 30267223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High efficiency microbial electrosynthesis of acetate from carbon dioxide by a self-assembled electroactive biofilm.
    Song TS; Zhang H; Liu H; Zhang D; Wang H; Yang Y; Yuan H; Xie J
    Bioresour Technol; 2017 Nov; 243():573-582. PubMed ID: 28704738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient removal of Cr(III)-organic complexes from water using UV/Fe(III) system: Negligible Cr(VI) accumulation and mechanism.
    Ye Y; Jiang Z; Xu Z; Zhang X; Wang D; Lv L; Pan B
    Water Res; 2017 Dec; 126():172-178. PubMed ID: 28946060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved performance of Cr(vi)-reducing microbial fuel cells by nano-FeS hybridized biocathodes.
    Zhuang X; Tang S; Dong W; Xin F; Jia H; Wu X
    RSC Adv; 2023 Feb; 13(10):6768-6778. PubMed ID: 36860531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The simultaneous removal of the combined pollutants of hexavalent chromium and o-nitrophenol by Chlamydomonas reinhardtii.
    Wei S; Cao J; Ma X; Ping J; Zhang C; Ke T; Zhang Y; Tao Y; Chen L
    Ecotoxicol Environ Saf; 2020 Jul; 198():110648. PubMed ID: 32388188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applicability of a submersible microbial fuel cell for Cr(VI) detection in water.
    Chung H; Ju WJ; Jho EH; Nam K
    Environ Monit Assess; 2016 Nov; 188(11):613. PubMed ID: 27730460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Facultative Electroactive Chromium(VI)-Reducing Bacterium Aerobically Isolated From a Biocathode Microbial Fuel Cell.
    Wu X; Ren X; Owens G; Brunetti G; Zhou J; Yong X; Wei P; Jia H
    Front Microbiol; 2018; 9():2883. PubMed ID: 30534122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced performance of hexavalent chromium reducing cathodes in the presence of Shewanella oneidensis MR-1 and lactate.
    Xafenias N; Zhang Y; Banks CJ
    Environ Sci Technol; 2013 May; 47(9):4512-20. PubMed ID: 23517384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.