These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
348 related articles for article (PubMed ID: 33271312)
1. Molecular basis of transcriptional pausing, stalling, and transcription-coupled repair initiation. Oh J; Xu J; Chong J; Wang D Biochim Biophys Acta Gene Regul Mech; 2021 Jan; 1864(1):194659. PubMed ID: 33271312 [TBL] [Abstract][Full Text] [Related]
2. Structural basis of DNA lesion recognition for eukaryotic transcription-coupled nucleotide excision repair. Wang W; Xu J; Chong J; Wang D DNA Repair (Amst); 2018 Nov; 71():43-55. PubMed ID: 30174298 [TBL] [Abstract][Full Text] [Related]
3. Transcription-coupled nucleotide excision repair: New insights revealed by genomic approaches. Duan M; Speer RM; Ulibarri J; Liu KJ; Mao P DNA Repair (Amst); 2021 Jul; 103():103126. PubMed ID: 33894524 [TBL] [Abstract][Full Text] [Related]
4. What happens at the lesion does not stay at the lesion: Transcription-coupled nucleotide excision repair and the effects of DNA damage on transcription in cis and trans. Geijer ME; Marteijn JA DNA Repair (Amst); 2018 Nov; 71():56-68. PubMed ID: 30195642 [TBL] [Abstract][Full Text] [Related]
5. Structural and biochemical analysis of DNA lesion-induced RNA polymerase II arrest. Oh J; Xu J; Chong J; Wang D Methods; 2019 Apr; 159-160():29-34. PubMed ID: 30797902 [TBL] [Abstract][Full Text] [Related]
6. Evidence that Moderate Eviction of Spt5 and Promotion of Error-Free Transcriptional Bypass by Rad26 Facilitates Transcription Coupled Nucleotide Excision Repair. Selvam K; Ding B; Sharma R; Li S J Mol Biol; 2019 Mar; 431(7):1322-1338. PubMed ID: 30790631 [TBL] [Abstract][Full Text] [Related]
7. The DNA damage response to transcription stress. Lans H; Hoeijmakers JHJ; Vermeulen W; Marteijn JA Nat Rev Mol Cell Biol; 2019 Dec; 20(12):766-784. PubMed ID: 31558824 [TBL] [Abstract][Full Text] [Related]
8. Dealing with transcription-blocking DNA damage: Repair mechanisms, RNA polymerase II processing and human disorders. Jia N; Guo C; Nakazawa Y; van den Heuvel D; Luijsterburg MS; Ogi T DNA Repair (Amst); 2021 Oct; 106():103192. PubMed ID: 34358806 [TBL] [Abstract][Full Text] [Related]
9. Strand-specific effect of Rad26 and TFIIS in rescuing transcriptional arrest by CAG trinucleotide repeat slip-outs. Xu J; Chong J; Wang D Nucleic Acids Res; 2021 Jul; 49(13):7618-7627. PubMed ID: 34197619 [TBL] [Abstract][Full Text] [Related]
10. Transcription-coupled repair and the transcriptional response to UV-Irradiation. Gaul L; Svejstrup JQ DNA Repair (Amst); 2021 Nov; 107():103208. PubMed ID: 34416541 [TBL] [Abstract][Full Text] [Related]
11. Opposite roles of transcription elongation factors Spt4/5 and Elf1 in RNA polymerase II transcription through B-form versus non-B DNA structures. Xu J; Chong J; Wang D Nucleic Acids Res; 2021 May; 49(9):4944-4953. PubMed ID: 33877330 [TBL] [Abstract][Full Text] [Related]
12. FACT subunit Spt16 controls UVSSA recruitment to lesion-stalled RNA Pol II and stimulates TC-NER. Wienholz F; Zhou D; Turkyilmaz Y; Schwertman P; Tresini M; Pines A; van Toorn M; Bezstarosti K; Demmers JAA; Marteijn JA Nucleic Acids Res; 2019 May; 47(8):4011-4025. PubMed ID: 30715484 [TBL] [Abstract][Full Text] [Related]
13. Causes and consequences of RNA polymerase II stalling during transcript elongation. Noe Gonzalez M; Blears D; Svejstrup JQ Nat Rev Mol Cell Biol; 2021 Jan; 22(1):3-21. PubMed ID: 33208928 [TBL] [Abstract][Full Text] [Related]
14. Effects of endogenous DNA base lesions on transcription elongation by mammalian RNA polymerase II. Implications for transcription-coupled DNA repair and transcriptional mutagenesis. Kuraoka I; Endou M; Yamaguchi Y; Wada T; Handa H; Tanaka K J Biol Chem; 2003 Feb; 278(9):7294-9. PubMed ID: 12466278 [TBL] [Abstract][Full Text] [Related]
15. DNA damage mediated transcription arrest: Step back to go forward. Mullenders L DNA Repair (Amst); 2015 Dec; 36():28-35. PubMed ID: 26422136 [TBL] [Abstract][Full Text] [Related]
16. Traveling Rocky Roads: The Consequences of Transcription-Blocking DNA Lesions on RNA Polymerase II. Steurer B; Marteijn JA J Mol Biol; 2017 Oct; 429(21):3146-3155. PubMed ID: 27851891 [TBL] [Abstract][Full Text] [Related]
17. Elf1 promotes Rad26's interaction with lesion-arrested Pol II for transcription-coupled repair. Sarsam RD; Xu J; Lahiri I; Gong W; Li Q; Oh J; Zhou Z; Hou P; Chong J; Hao N; Li S; Wang D; Leschziner AE Proc Natl Acad Sci U S A; 2024 Jan; 121(3):e2314245121. PubMed ID: 38194460 [TBL] [Abstract][Full Text] [Related]
18. DNA damage response and transcription. Lagerwerf S; Vrouwe MG; Overmeer RM; Fousteri MI; Mullenders LH DNA Repair (Amst); 2011 Jul; 10(7):743-50. PubMed ID: 21622031 [TBL] [Abstract][Full Text] [Related]
19. RNA polymerase II transcriptional fidelity control and its functional interplay with DNA modifications. Xu L; Wang W; Chong J; Shin JH; Xu J; Wang D Crit Rev Biochem Mol Biol; 2015; 50(6):503-19. PubMed ID: 26392149 [TBL] [Abstract][Full Text] [Related]
20. Live-cell imaging of endogenous CSB-mScarletI as a sensitive marker for DNA-damage-induced transcription stress. Zhou D; Yu Q; Janssens RC; Marteijn JA Cell Rep Methods; 2024 Jan; 4(1):100674. PubMed ID: 38176411 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]