BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 33271312)

  • 1. Molecular basis of transcriptional pausing, stalling, and transcription-coupled repair initiation.
    Oh J; Xu J; Chong J; Wang D
    Biochim Biophys Acta Gene Regul Mech; 2021 Jan; 1864(1):194659. PubMed ID: 33271312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis of DNA lesion recognition for eukaryotic transcription-coupled nucleotide excision repair.
    Wang W; Xu J; Chong J; Wang D
    DNA Repair (Amst); 2018 Nov; 71():43-55. PubMed ID: 30174298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcription-coupled nucleotide excision repair: New insights revealed by genomic approaches.
    Duan M; Speer RM; Ulibarri J; Liu KJ; Mao P
    DNA Repair (Amst); 2021 Jul; 103():103126. PubMed ID: 33894524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. What happens at the lesion does not stay at the lesion: Transcription-coupled nucleotide excision repair and the effects of DNA damage on transcription in cis and trans.
    Geijer ME; Marteijn JA
    DNA Repair (Amst); 2018 Nov; 71():56-68. PubMed ID: 30195642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and biochemical analysis of DNA lesion-induced RNA polymerase II arrest.
    Oh J; Xu J; Chong J; Wang D
    Methods; 2019 Apr; 159-160():29-34. PubMed ID: 30797902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence that Moderate Eviction of Spt5 and Promotion of Error-Free Transcriptional Bypass by Rad26 Facilitates Transcription Coupled Nucleotide Excision Repair.
    Selvam K; Ding B; Sharma R; Li S
    J Mol Biol; 2019 Mar; 431(7):1322-1338. PubMed ID: 30790631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The DNA damage response to transcription stress.
    Lans H; Hoeijmakers JHJ; Vermeulen W; Marteijn JA
    Nat Rev Mol Cell Biol; 2019 Dec; 20(12):766-784. PubMed ID: 31558824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dealing with transcription-blocking DNA damage: Repair mechanisms, RNA polymerase II processing and human disorders.
    Jia N; Guo C; Nakazawa Y; van den Heuvel D; Luijsterburg MS; Ogi T
    DNA Repair (Amst); 2021 Oct; 106():103192. PubMed ID: 34358806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strand-specific effect of Rad26 and TFIIS in rescuing transcriptional arrest by CAG trinucleotide repeat slip-outs.
    Xu J; Chong J; Wang D
    Nucleic Acids Res; 2021 Jul; 49(13):7618-7627. PubMed ID: 34197619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opposite roles of transcription elongation factors Spt4/5 and Elf1 in RNA polymerase II transcription through B-form versus non-B DNA structures.
    Xu J; Chong J; Wang D
    Nucleic Acids Res; 2021 May; 49(9):4944-4953. PubMed ID: 33877330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FACT subunit Spt16 controls UVSSA recruitment to lesion-stalled RNA Pol II and stimulates TC-NER.
    Wienholz F; Zhou D; Turkyilmaz Y; Schwertman P; Tresini M; Pines A; van Toorn M; Bezstarosti K; Demmers JAA; Marteijn JA
    Nucleic Acids Res; 2019 May; 47(8):4011-4025. PubMed ID: 30715484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Causes and consequences of RNA polymerase II stalling during transcript elongation.
    Noe Gonzalez M; Blears D; Svejstrup JQ
    Nat Rev Mol Cell Biol; 2021 Jan; 22(1):3-21. PubMed ID: 33208928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of endogenous DNA base lesions on transcription elongation by mammalian RNA polymerase II. Implications for transcription-coupled DNA repair and transcriptional mutagenesis.
    Kuraoka I; Endou M; Yamaguchi Y; Wada T; Handa H; Tanaka K
    J Biol Chem; 2003 Feb; 278(9):7294-9. PubMed ID: 12466278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA damage mediated transcription arrest: Step back to go forward.
    Mullenders L
    DNA Repair (Amst); 2015 Dec; 36():28-35. PubMed ID: 26422136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elf1 promotes Rad26's interaction with lesion-arrested Pol II for transcription-coupled repair.
    Sarsam RD; Xu J; Lahiri I; Gong W; Li Q; Oh J; Zhou Z; Hou P; Chong J; Hao N; Li S; Wang D; Leschziner AE
    Proc Natl Acad Sci U S A; 2024 Jan; 121(3):e2314245121. PubMed ID: 38194460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Traveling Rocky Roads: The Consequences of Transcription-Blocking DNA Lesions on RNA Polymerase II.
    Steurer B; Marteijn JA
    J Mol Biol; 2017 Oct; 429(21):3146-3155. PubMed ID: 27851891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA damage response and transcription.
    Lagerwerf S; Vrouwe MG; Overmeer RM; Fousteri MI; Mullenders LH
    DNA Repair (Amst); 2011 Jul; 10(7):743-50. PubMed ID: 21622031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA polymerase II transcriptional fidelity control and its functional interplay with DNA modifications.
    Xu L; Wang W; Chong J; Shin JH; Xu J; Wang D
    Crit Rev Biochem Mol Biol; 2015; 50(6):503-19. PubMed ID: 26392149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Live-cell imaging of endogenous CSB-mScarletI as a sensitive marker for DNA-damage-induced transcription stress.
    Zhou D; Yu Q; Janssens RC; Marteijn JA
    Cell Rep Methods; 2024 Jan; 4(1):100674. PubMed ID: 38176411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis of transcriptional stalling and bypass of abasic DNA lesion by RNA polymerase II.
    Wang W; Walmacq C; Chong J; Kashlev M; Wang D
    Proc Natl Acad Sci U S A; 2018 Mar; 115(11):E2538-E2545. PubMed ID: 29487211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.