These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 33271356)
1. Fabrication of centimeter-sized 3D constructs with patterned endothelial cells through assembly of cell-laden microbeads as a potential bone graft. Yang G; Mahadik B; Choi JY; Yu JR; Mollot T; Jiang B; He X; Fisher JP Acta Biomater; 2021 Feb; 121():204-213. PubMed ID: 33271356 [TBL] [Abstract][Full Text] [Related]
2. A modular approach to the engineering of a centimeter-sized bone tissue construct with human amniotic mesenchymal stem cells-laden microcarriers. Chen M; Wang X; Ye Z; Zhang Y; Zhou Y; Tan WS Biomaterials; 2011 Oct; 32(30):7532-42. PubMed ID: 21774980 [TBL] [Abstract][Full Text] [Related]
3. Fabrication of viable centimeter-sized 3D tissue constructs with microchannel conduits for improved tissue properties through assembly of cell-laden microbeads. Luo H; Chen M; Wang X; Mei Y; Ye Z; Zhou Y; Tan WS J Tissue Eng Regen Med; 2014 Jun; 8(6):493-504. PubMed ID: 22761157 [TBL] [Abstract][Full Text] [Related]
4. Automated 3D bioassembly of micro-tissues for biofabrication of hybrid tissue engineered constructs. Mekhileri NV; Lim KS; Brown GCJ; Mutreja I; Schon BS; Hooper GJ; Woodfield TBF Biofabrication; 2018 Jan; 10(2):024103. PubMed ID: 29199637 [TBL] [Abstract][Full Text] [Related]
5. Engineered Liver Tissue Culture in an Yang G; Mahadik B; Mollot T; Pinsky J; Jones A; Robinson A; Najafali D; Rivkin D; Katsnelson J; Piard C; Fisher JP Tissue Eng Part A; 2020 Dec; 26(23-24):1369-1377. PubMed ID: 33054685 [TBL] [Abstract][Full Text] [Related]
6. Vascularization in Engineered Tissue Construct by Assembly of Cellular Patterned Micromodules and Degradable Microspheres. Zhong M; Wei D; Yang Y; Sun J; Chen X; Guo L; Wei Q; Wan Y; Fan H; Zhang X ACS Appl Mater Interfaces; 2017 Feb; 9(4):3524-3534. PubMed ID: 28075550 [TBL] [Abstract][Full Text] [Related]
7. Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering. Zhang J; Wehrle E; Adamek P; Paul GR; Qin XH; Rubert M; Müller R Acta Biomater; 2020 Sep; 114():307-322. PubMed ID: 32673752 [TBL] [Abstract][Full Text] [Related]
8. Modular Tissue Assembly Strategies for Biofabrication of Engineered Cartilage. Schon BS; Hooper GJ; Woodfield TB Ann Biomed Eng; 2017 Jan; 45(1):100-114. PubMed ID: 27073109 [TBL] [Abstract][Full Text] [Related]
9. Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering. Heo DN; Hospodiuk M; Ozbolat IT Acta Biomater; 2019 Sep; 95():348-356. PubMed ID: 30831326 [TBL] [Abstract][Full Text] [Related]
10. Prevascularization of 3D printed bone scaffolds by bioactive hydrogels and cell co-culture. Kuss MA; Wu S; Wang Y; Untrauer JB; Li W; Lim JY; Duan B J Biomed Mater Res B Appl Biomater; 2018 Jul; 106(5):1788-1798. PubMed ID: 28901689 [TBL] [Abstract][Full Text] [Related]
11. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model. Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059 [TBL] [Abstract][Full Text] [Related]
12. Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing. Fedorovich NE; De Wijn JR; Verbout AJ; Alblas J; Dhert WJ Tissue Eng Part A; 2008 Jan; 14(1):127-33. PubMed ID: 18333811 [TBL] [Abstract][Full Text] [Related]
13. Comparison of uncultured marrow mononuclear cells and culture-expanded mesenchymal stem cells in 3D collagen-chitosan microbeads for orthopedic tissue engineering. Wise JK; Alford AI; Goldstein SA; Stegemann JP Tissue Eng Part A; 2014 Jan; 20(1-2):210-24. PubMed ID: 23879621 [TBL] [Abstract][Full Text] [Related]
14. Polymeric Microspheres/Cells/Extracellular Matrix Constructs Produced by Auto-Assembly for Bone Modular Tissue Engineering. Mielan B; Sousa DM; Krok-Borkowicz M; Eloy P; Dupont C; Lamghari M; Pamuła E Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360672 [TBL] [Abstract][Full Text] [Related]
15. A self-setting iPSMSC-alginate-calcium phosphate paste for bone tissue engineering. Wang P; Song Y; Weir MD; Sun J; Zhao L; Simon CG; Xu HH Dent Mater; 2016 Feb; 32(2):252-63. PubMed ID: 26743965 [TBL] [Abstract][Full Text] [Related]
17. 3D bioprinted human iPSC-derived somatosensory constructs with functional and highly purified sensory neuron networks. Hirano M; Huang Y; Vela Jarquin D; De la Garza Hernández RL; Jodat YA; Luna Cerón E; García-Rivera LE; Shin SR Biofabrication; 2021 Jun; 13(3):. PubMed ID: 33962404 [TBL] [Abstract][Full Text] [Related]
18. Bone grafts engineered from human adipose-derived stem cells in dynamic 3D-environments. Declercq HA; De Caluwé T; Krysko O; Bachert C; Cornelissen MJ Biomaterials; 2013 Jan; 34(4):1004-17. PubMed ID: 23146435 [TBL] [Abstract][Full Text] [Related]
19. Hybrid spheroid microscaffolds as modular tissue units to build macro-tissue assemblies for tissue engineering. Guillaume O; Kopinski-Grünwald O; Weisgrab G; Baumgartner T; Arslan A; Whitmore K; Van Vlierberghe S; Ovsianikov A Acta Biomater; 2023 Jul; 165():72-85. PubMed ID: 35288312 [TBL] [Abstract][Full Text] [Related]
20. Bone Marrow Mesenchymal Stem Cell-Derived Tissues are Mechanically Superior to Meniscus Cells. Elkhenany HA; Szojka ARA; Mulet-Sierra A; Liang Y; Kunze M; Lan X; Sommerfeldt M; Jomha NM; Adesida AB Tissue Eng Part A; 2021 Jul; 27(13-14):914-928. PubMed ID: 32940137 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]