BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 33271357)

  • 1. Electrospun conductive nanofiber yarns for accelerating mesenchymal stem cells differentiation and maturation into Schwann cell-like cells under a combination of electrical stimulation and chemical induction.
    Wu S; Qi Y; Shi W; Kuss M; Chen S; Duan B
    Acta Biomater; 2022 Feb; 139():91-104. PubMed ID: 33271357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro and in vivo studies of electroactive reduced graphene oxide-modified nanofiber scaffolds for peripheral nerve regeneration.
    Wang J; Cheng Y; Chen L; Zhu T; Ye K; Jia C; Wang H; Zhu M; Fan C; Mo X
    Acta Biomater; 2019 Jan; 84():98-113. PubMed ID: 30471474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tendon-bioinspired wavy nanofibrous scaffolds provide tunable anisotropy and promote tenogenesis for tendon tissue engineering.
    Wu S; Liu J; Qi Y; Cai J; Zhao J; Duan B; Chen S
    Mater Sci Eng C Mater Biol Appl; 2021 Jul; 126():112181. PubMed ID: 34082981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Guiding Mesenchymal Stem Cells into Myelinating Schwann Cell-Like Phenotypes by Using Electrospun Core-Sheath Nanoyarns.
    Wu S; Ni S; Jiang X; Kuss MA; Wang HJ; Duan B
    ACS Biomater Sci Eng; 2019 Oct; 5(10):5284-5294. PubMed ID: 33455233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. State-of-the-art review of advanced electrospun nanofiber yarn-based textiles for biomedical applications.
    Wu S; Dong T; Li Y; Sun M; Qi Y; Liu J; Kuss MA; Chen S; Duan B
    Appl Mater Today; 2022 Jun; 27():101473. PubMed ID: 35434263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electric Conductivity on Aligned Nanofibers Facilitates the Transdifferentiation of Mesenchymal Stem Cells into Schwann Cells and Regeneration of Injured Peripheral Nerve.
    Hu X; Wang X; Xu Y; Li L; Liu J; He Y; Zou Y; Yu L; Qiu X; Guo J
    Adv Healthc Mater; 2020 Jun; 9(11):e1901570. PubMed ID: 32338461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aligned conductive core-shell biomimetic scaffolds based on nanofiber yarns/hydrogel for enhanced 3D neurite outgrowth alignment and elongation.
    Wang L; Wu Y; Hu T; Ma PX; Guo B
    Acta Biomater; 2019 Sep; 96():175-187. PubMed ID: 31260823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering.
    Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M
    Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The cellular response of nerve cells on poly-l-lysine coated PLGA-MWCNTs aligned nanofibers under electrical stimulation.
    Wang J; Tian L; Chen N; Ramakrishna S; Mo X
    Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():715-726. PubMed ID: 30033306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Living nanofiber yarn-based woven biotextiles for tendon tissue engineering using cell tri-culture and mechanical stimulation.
    Wu S; Wang Y; Streubel PN; Duan B
    Acta Biomater; 2017 Oct; 62():102-115. PubMed ID: 28864251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A micropatterned conductive electrospun nanofiber mesh combined with electrical stimulation for synergistically enhancing differentiation of rat neural stem cells.
    Yan H; Wang Y; Li L; Zhou X; Shi X; Wei Y; Zhang P
    J Mater Chem B; 2020 Apr; 8(13):2673-2688. PubMed ID: 32147674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chitosan-PVA-CNT nanofibers as electrically conductive scaffolds for cardiovascular tissue engineering.
    Mombini S; Mohammadnejad J; Bakhshandeh B; Narmani A; Nourmohammadi J; Vahdat S; Zirak S
    Int J Biol Macromol; 2019 Nov; 140():278-287. PubMed ID: 31400428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effective nerve cell modulation by electrical stimulation of carbon nanotube embedded conductive polymeric scaffolds.
    Zhou Z; Liu X; Wu W; Park S; Miller Ii AL; Terzic A; Lu L
    Biomater Sci; 2018 Aug; 6(9):2375-2385. PubMed ID: 30019709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining electrospinning with hot drawing process to fabricate high performance poly (L-lactic acid) nanofiber yarns for advanced nanostructured bio-textiles.
    Wu S; Liu J; Cai J; Zhao J; Duan B; Chen S
    Biofabrication; 2021 Sep; 13(4):. PubMed ID: 34450602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CNT/Sericin Conductive Nerve Guidance Conduit Promotes Functional Recovery of Transected Peripheral Nerve Injury in a Rat Model.
    Li X; Yang W; Xie H; Wang J; Zhang L; Wang Z; Wang L
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):36860-36872. PubMed ID: 32649170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of electrically conductive hybrid nanofibers based on CNT-polyurethane nanocomposite for cardiac tissue engineering.
    Shokraei N; Asadpour S; Shokraei S; Nasrollahzadeh Sabet M; Faridi-Majidi R; Ghanbari H
    Microsc Res Tech; 2019 Aug; 82(8):1316-1325. PubMed ID: 31062449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Composites made of polyorganophosphazene and carbon nanotube up-regulating osteogenic activity of BMSCs under electrical stimulation.
    Huang Y; Jing W; Li Y; Cai Q; Yang X
    Colloids Surf B Biointerfaces; 2021 Aug; 204():111785. PubMed ID: 33932894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid hydrogel-aligned carbon nanotube scaffolds to enhance cardiac differentiation of embryoid bodies.
    Ahadian S; Yamada S; Ramón-Azcón J; Estili M; Liang X; Nakajima K; Shiku H; Khademhosseini A; Matsue T
    Acta Biomater; 2016 Feb; 31():134-143. PubMed ID: 26621696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of conductive PPy/SF composite scaffold and electrical stimulation for neural tissue engineering.
    Zhao Y; Liang Y; Ding S; Zhang K; Mao HQ; Yang Y
    Biomaterials; 2020 Oct; 255():120164. PubMed ID: 32554132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tough and flexible CNT-polymeric hybrid scaffolds for engineering cardiac constructs.
    Kharaziha M; Shin SR; Nikkhah M; Topkaya SN; Masoumi N; Annabi N; Dokmeci MR; Khademhosseini A
    Biomaterials; 2014 Aug; 35(26):7346-54. PubMed ID: 24927679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.