These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 33271521)

  • 41. Trout-like multifunctional piezoelectric robotic fish and energy harvester.
    Tan D; Wang YC; Kohtanen E; Erturk A
    Bioinspir Biomim; 2021 Jun; 16(4):. PubMed ID: 33984855
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Swimming kinematics and hydrodynamic imaging in the blind Mexican cave fish (Astyanax fasciatus).
    Windsor SP; Tan D; Montgomery JC
    J Exp Biol; 2008 Sep; 211(Pt 18):2950-9. PubMed ID: 18775932
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Metachronal Swimming of Mantis Shrimp: Kinematics and Interpleopod Vortex Interactions.
    Garayev K; Murphy DW
    Integr Comp Biol; 2021 Nov; 61(5):1631-1643. PubMed ID: 33997904
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Distributed flow estimation and closed-loop control of an underwater vehicle with a multi-modal artificial lateral line.
    DeVries L; Lagor FD; Lei H; Tan X; Paley DA
    Bioinspir Biomim; 2015 Mar; 10(2):025002. PubMed ID: 25807584
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A model of the lateral line of fish for vortex sensing.
    Ren Z; Mohseni K
    Bioinspir Biomim; 2012 Sep; 7(3):036016. PubMed ID: 22585366
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Undulating fins produce off-axis thrust and flow structures.
    Neveln ID; Bale R; Bhalla AP; Curet OM; Patankar NA; MacIver MA
    J Exp Biol; 2014 Jan; 217(Pt 2):201-13. PubMed ID: 24072799
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hydrodynamics of Vortex Generation during Bell Contraction by the Hydromedusa
    Costello JH; Colin SP; Gemmell BJ; Dabiri JO
    Biomimetics (Basel); 2019 Jul; 4(3):. PubMed ID: 31284395
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Classifying vortex wakes using neural networks.
    Colvert B; Alsalman M; Kanso E
    Bioinspir Biomim; 2018 Feb; 13(2):025003. PubMed ID: 29334075
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Using hyperbolic Lagrangian coherent structures to investigate vortices in bioinspired fluid flows.
    Green MA; Rowley CW; Smits AJ
    Chaos; 2010 Mar; 20(1):017510. PubMed ID: 20370300
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Computational modeling of swimming in marine invertebrates with implications for soft swimming robots.
    Zhou Z; Mittal R
    Bioinspir Biomim; 2020 Jun; 15(4):046010. PubMed ID: 32320957
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanisms of anguilliform locomotion in fishes studied using simple three-dimensional physical models.
    Lim JL; Lauder GV
    Bioinspir Biomim; 2016 Jul; 11(4):046006. PubMed ID: 27378052
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Real-time parametric estimation of periodic wake-foil interactions using bioinspired pressure sensing and machine learning.
    Xu WH; Xu GD; Shan L
    Bioinspir Biomim; 2022 Mar; 17(2):. PubMed ID: 34996050
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Unsupervised clustering and performance prediction of vortex wakes from bio-inspired propulsors.
    Calvet AG; Dave M; Franck JA
    Bioinspir Biomim; 2021 Jun; 16(4):. PubMed ID: 33984842
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The fish tail motion forms an attached leading edge vortex.
    Borazjani I; Daghooghi M
    Proc Biol Sci; 2013 Apr; 280(1756):20122071. PubMed ID: 23407826
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hydrodynamic Characteristics of Different Undulatory Underwater Swimming Positions Based on Multi-Body Motion Numerical Simulation Method.
    Yang J; Li T; Chen Z; Zuo C; Li X
    Int J Environ Res Public Health; 2021 Nov; 18(22):. PubMed ID: 34832017
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hydrodynamics of C-Start Escape Responses of Fish as Studied with Simple Physical Models.
    Witt WC; Wen L; Lauder GV
    Integr Comp Biol; 2015 Oct; 55(4):728-39. PubMed ID: 25920507
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Influence of a postural change of the swimmer's head in hydrodynamic performances using 3D CFD.
    Popa CV; Arfaoui A; Fohanno S; Taïar R; Polidori G
    Comput Methods Biomech Biomed Engin; 2014; 17(4):344-51. PubMed ID: 22587390
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A bio-inspired real-time capable artificial lateral line system for freestream flow measurements.
    Abels C; Qualtieri A; De Vittorio M; Megill WM; Rizzi F
    Bioinspir Biomim; 2016 Jun; 11(3):035006. PubMed ID: 27257144
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effect of unsteady flow due to acceleration on hydrodynamic forces acting on the hand in swimming.
    Kudo S; Vennell R; Wilson B
    J Biomech; 2013 Jun; 46(10):1697-704. PubMed ID: 23684079
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Steady hydrodynamic interaction between human swimmers.
    Yuan ZM; Li M; Ji CY; Li L; Jia L; Incecik A
    J R Soc Interface; 2019 Jan; 16(150):20180768. PubMed ID: 30958151
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.