These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 33271521)

  • 61. Volumetric imaging of shark tail hydrodynamics reveals a three-dimensional dual-ring vortex wake structure.
    Flammang BE; Lauder GV; Troolin DR; Strand T
    Proc Biol Sci; 2011 Dec; 278(1725):3670-8. PubMed ID: 21543357
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Corollary discharge enables proprioception from lateral line sensory feedback.
    Skandalis DA; Lunsford ET; Liao JC
    PLoS Biol; 2021 Oct; 19(10):e3001420. PubMed ID: 34634044
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Computational fluid dynamics study of swimmer's hand velocity, orientation, and shape: contributions to hydrodynamics.
    Bilinauskaite M; Mantha VR; Rouboa AI; Ziliukas P; Silva AJ
    Biomed Res Int; 2013; 2013():140487. PubMed ID: 23691493
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena.
    Asadnia M; Kottapalli AG; Miao J; Warkiani ME; Triantafyllou MS
    J R Soc Interface; 2015 Oct; 12(111):20150322. PubMed ID: 26423435
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Efficient collective swimming by harnessing vortices through deep reinforcement learning.
    Verma S; Novati G; Koumoutsakos P
    Proc Natl Acad Sci U S A; 2018 Jun; 115(23):5849-5854. PubMed ID: 29784820
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Tuna locomotion: a computational hydrodynamic analysis of finlet function.
    Wang J; Wainwright DK; Lindengren RE; Lauder GV; Dong H
    J R Soc Interface; 2020 Apr; 17(165):20190590. PubMed ID: 32264740
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Hydrodynamic sensing does not facilitate active drag reduction in the golden shiner (Notemigonus crysoleucas).
    McHenry MJ; Michel KB; Stewart W; Müller UK
    J Exp Biol; 2010 Apr; 213(Pt 8):1309-19. PubMed ID: 20348343
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Dipole- and vortex sheet-based models of fish swimming.
    Zhang P; Peterson SD; Porfiri M
    J Theor Biol; 2023 Jan; 556():111313. PubMed ID: 36261068
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Ontogenetic propulsive transitions by Sarsia tubulosa medusae.
    Katija K; Colin SP; Costello JH; Jiang H
    J Exp Biol; 2015 Aug; 218(Pt 15):2333-43. PubMed ID: 26026040
    [TBL] [Abstract][Full Text] [Related]  

  • 70. On the role of form and kinematics on the hydrodynamics of self-propelled body/caudal fin swimming.
    Borazjani I; Sotiropoulos F
    J Exp Biol; 2010 Jan; 213(1):89-107. PubMed ID: 20008366
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Fin-fin interactions during locomotion in a simplified biomimetic fish model.
    Matthews DG; Lauder GV
    Bioinspir Biomim; 2021 Sep; 16(4):. PubMed ID: 34015781
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Hydrodynamic schooling of flapping swimmers.
    Becker AD; Masoud H; Newbolt JW; Shelley M; Ristroph L
    Nat Commun; 2015 Oct; 6():8514. PubMed ID: 26439509
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Hydrodynamic body shape analysis and their impact on swimming performance.
    Li TZ; Zhan JM
    Acta Bioeng Biomech; 2015; 17(4):3-11. PubMed ID: 26898107
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The Kármán gait: novel body kinematics of rainbow trout swimming in a vortex street.
    Liao JC; Beal DN; Lauder GV; Triantafyllou MS
    J Exp Biol; 2003 Mar; 206(Pt 6):1059-73. PubMed ID: 12582148
    [TBL] [Abstract][Full Text] [Related]  

  • 75. An inertial mechanism behind dynamic station holding by fish swinging in a vortex street.
    Harvey ST; Muhawenimana V; Müller S; Wilson CAME; Denissenko P
    Sci Rep; 2022 Jul; 12(1):12660. PubMed ID: 35879341
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Fish and robots swimming together in a water tunnel: robot color and tail-beat frequency influence fish behavior.
    Polverino G; Phamduy P; Porfiri M
    PLoS One; 2013; 8(10):e77589. PubMed ID: 24204882
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Laboratory study on behavioral responses of hybrid sturgeon, Acipenseridae, to wake flows induced by cylindrical bluff bodies.
    Zha W; Zeng Y; Katul G; Li Q; Liu X; Chen X
    Sci Total Environ; 2021 Dec; 799():149403. PubMed ID: 34364287
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Trapping of swimmers in a vortex lattice.
    Berman SA; Mitchell KA
    Chaos; 2020 Jun; 30(6):063121. PubMed ID: 32611071
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Quantification of the wake of rainbow trout (Oncorhynchus mykiss) using three-dimensional stereoscopic digital particle image velocimetry.
    Nauen JC; Lauder GV
    J Exp Biol; 2002 Nov; 205(Pt 21):3271-9. PubMed ID: 12324537
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Hydrodynamic advantages of swimming by salp chains.
    Sutherland KR; Weihs D
    J R Soc Interface; 2017 Aug; 14(133):. PubMed ID: 28768881
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.