BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 33271522)

  • 1. Optical quantum yield in plasmonic nanowaveguide.
    Singh MR; Brassem G; Yastrebov S
    Nanotechnology; 2021 Mar; 32(13):135207. PubMed ID: 33271522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transient Study of Photoluminescence in Nanowaveguides Doped with Quantum Emitters and Metallic Nanoparticles.
    Brassem G; Singh MR; Yastrebov S
    Chemphyschem; 2024 Apr; ():e202300802. PubMed ID: 38598009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A study of two-photon florescence in metallic nanoshells.
    Singh MR; Persaud PD; Yastrebov S
    Nanotechnology; 2020 Apr; 31(26):265203. PubMed ID: 32197263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of plasmonics in hybrids made from a quantum emitter and double metallic nanoshell dimer.
    Guo J; Black K; Hu J; Singh M
    J Phys Condens Matter; 2018 May; 30(18):185301. PubMed ID: 29546847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct observation of ultrafast plasmonic hot electron transfer in the strong coupling regime.
    Shan H; Yu Y; Wang X; Luo Y; Zu S; Du B; Han T; Li B; Li Y; Wu J; Lin F; Shi K; Tay BK; Liu Z; Zhu X; Fang Z
    Light Sci Appl; 2019; 8():9. PubMed ID: 30651984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy Transfer from Quantum Dots to Graphene and MoS2: The Role of Absorption and Screening in Two-Dimensional Materials.
    Raja A; Montoya Castillo A; Zultak J; Zhang XX; Ye Z; Roquelet C; Chenet DA; van der Zande AM; Huang P; Jockusch S; Hone J; Reichman DR; Brus LE; Heinz TF
    Nano Lett; 2016 Apr; 16(4):2328-33. PubMed ID: 26928675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic Effect on Exciton and Multiexciton Emission of Single Quantum Dots.
    Dey S; Zhao J
    J Phys Chem Lett; 2016 Aug; 7(15):2921-9. PubMed ID: 27411778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of the excitation rate of quantum dots mediated by momentum-resolved Bloch-like surface plasmon polaritons.
    Lin M; Cao ZL; Ong HC
    Opt Express; 2017 Mar; 25(6):6092-6103. PubMed ID: 28380964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coherent molecular resonances in quantum dot-metallic nanoparticle systems: coherent self-renormalization and structural effects.
    Hatef A; Sadeghi SM; Singh MR
    Nanotechnology; 2012 May; 23(20):205203. PubMed ID: 22543983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic studies of plasmon coupling between photosynthetic complexes and metallic quantum dots.
    Olejnik M; Krajnik B; Kowalska D; Lin G; Mackowski S
    J Phys Condens Matter; 2013 May; 25(19):194103. PubMed ID: 23611979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silver Nanoshell Plasmonically Controlled Emission of Semiconductor Quantum Dots in the Strong Coupling Regime.
    Zhou N; Yuan M; Gao Y; Li D; Yang D
    ACS Nano; 2016 Apr; 10(4):4154-63. PubMed ID: 26972554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coherently-enabled environmental control of optics and energy transfer pathways of hybrid quantum dot-metallic nanoparticle systems.
    Hatef A; Sadeghi SM; Fortin-Deschênes S; Boulais E; Meunier M
    Opt Express; 2013 Mar; 21(5):5643-53. PubMed ID: 23482138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoluminescence Quenching Upon Growth of Metal Nanoparticles: Quantum-Mechanical Views.
    Gangopadhyay P
    Chemphyschem; 2024 Jun; ():e202300464. PubMed ID: 38923100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional plasmonic nanoclusters driven by co-assembly of thermo-plasmonic nanoparticles and colloidal quantum dots.
    Kim WG; Devaraj V; Yang Y; Lee JM; Kim JT; Oh JW; Rho J
    Nanoscale; 2022 Nov; 14(44):16450-16457. PubMed ID: 36214195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large exciton binding energy, high photoluminescence quantum yield and improved photostability of organo-metal halide hybrid perovskite quantum dots grown on a mesoporous titanium dioxide template.
    Parveen S; Paul KK; Das R; Giri PK
    J Colloid Interface Sci; 2019 Mar; 539():619-633. PubMed ID: 30612025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain- and surface-induced modification of photoluminescence from self-assembled GaN/Al0.5Ga0.5N quantum dots: strong effect of capping layer and atmospheric condition.
    Kim JH; Elmaghraoui D; Leroux M; Korytov M; Vennéguès P; Jaziri S; Brault J; Cho YH
    Nanotechnology; 2014 Aug; 25(30):305703. PubMed ID: 25008561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plexciton quenching by resonant electron transfer from quantum emitter to metallic nanoantenna.
    Marinica DC; Lourenço-Martins H; Aizpurua J; Borisov AG
    Nano Lett; 2013; 13(12):5972-8. PubMed ID: 24206447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wavelength, concentration, and distance dependence of nonradiative energy transfer to a plane of gold nanoparticles.
    Zhang X; Marocico CA; Lunz M; Gerard VA; Gun'ko YK; Lesnyak V; Gaponik N; Susha AS; Rogach AL; Bradley AL
    ACS Nano; 2012 Oct; 6(10):9283-90. PubMed ID: 22973978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined effects of emitter-emitter and emitter-plasmonic surface separations dictate photoluminescence enhancement in a plasmonic field.
    Thomas EM; Cortes CL; Paul L; Gray SK; Thomas KG
    Phys Chem Chem Phys; 2022 Jul; 24(28):17250-17262. PubMed ID: 35796601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An experimental and theoretical mechanistic study of biexciton quantum yield enhancement in single quantum dots near gold nanoparticles.
    Dey S; Zhou Y; Tian X; Jenkins JA; Chen O; Zou S; Zhao J
    Nanoscale; 2015 Apr; 7(15):6851-8. PubMed ID: 25806486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.