These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 33272001)

  • 1. Effect of Nitrided and Nitrocarburised Austenite on Pitting and Crevice Corrosion Resistance of 316LVM Steel Implants.
    Kajzer A; Ceglarska M; Sura N; Kajzer W; Borowski T; Tarnowski M; Pilecki Z
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33272001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fretting initiated crevice corrosion of 316LVM stainless steel in physiological phosphate buffered saline: Potential and cycles to initiation.
    Liu Y; Zhu D; Pierre D; Gilbert JL
    Acta Biomater; 2019 Oct; 97():565-577. PubMed ID: 31374339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro crevice corrosion behavior of implant materials.
    Sutow EJ; Jones DW; Milne EL
    J Dent Res; 1985 May; 64(5):842-7. PubMed ID: 3858307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing the Corrosion Resistance of Austenitic Steel Using Active Screen Plasma Nitriding and Nitrocarburising.
    Borowski T
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34204012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of surface condition on the localized corrosion of 316L stainless steel orthopaedic implants.
    Beddoes J; Bucci K
    J Mater Sci Mater Med; 1999 Jul; 10(7):389-94. PubMed ID: 15348123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Heat-Treated AISI 316 Stainless Steel in Solar Furnaces to Be Used as Possible Implant Material.
    Milosan I; Florescu M; Cristea D; Voiculescu I; Pop MA; Cañadas I; Rodriguez J; Bogatu CA; Bedo T
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 31991908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro corrosion resistance of plasma source ion nitrided austenitic stainless steels.
    Le MK; Zhu XM
    Biomaterials; 2001 Apr; 22(7):641-7. PubMed ID: 11246957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Pitting Corrosion Resistance of Nanostructured AISI 304 Stainless Steel via Pipe Inner Surface Grinding Treatment.
    Han X; Wei P; Zhao Y; Wang Z; Li C; Wu X; Zhang H
    Nanomaterials (Basel); 2023 Jan; 13(2):. PubMed ID: 36678073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of the Corrosion Behavior of Stainless Steel in Food Industry.
    Rossi S; Leso SM; Calovi M
    Materials (Basel); 2024 Apr; 17(7):. PubMed ID: 38612130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Facile Method to Modify the Characteristics and Corrosion Behavior of 304 Stainless Steel by Surface Nanostructuring toward Biomedical Applications.
    Thangaraj B; Nellaiappan SN; Kulandaivelu R; Lee MH; Nishimura T
    ACS Appl Mater Interfaces; 2015 Aug; 7(32):17731-47. PubMed ID: 26196218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microstructure, Pitting Corrosion Resistance and Impact Toughness of Duplex Stainless Steel Underwater Dry Hyperbaric Flux-Cored Arc Welds.
    Hu Y; Shi YH; Shen XQ; Wang ZM
    Materials (Basel); 2017 Dec; 10(12):. PubMed ID: 29258262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crevice and fretting corrosion of stainless-steel plates and screws.
    Brown SA; Simpson JP
    J Biomed Mater Res; 1981 Nov; 15(6):867-78. PubMed ID: 7309768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and Properties of Gas-Nitrided, Precipitation-Hardened Martensitic Stainless Steel.
    Kochmański P; Długozima M; Baranowska J
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corrosion behavior of 2205 duplex stainless steel.
    Platt JA; Guzman A; Zuccari A; Thornburg DW; Rhodes BF; Oshida Y; Moore BK
    Am J Orthod Dentofacial Orthop; 1997 Jul; 112(1):69-79. PubMed ID: 9228844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of biocompatibility of 316LVM stainless steel by cyclic potentiodynamic passivation.
    Shahryari A; Omanovic S; Szpunar JA
    J Biomed Mater Res A; 2009 Jun; 89(4):1049-62. PubMed ID: 18478556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of wire fretting on the corrosion resistance of common medical alloys.
    Siddiqui DA; Sivan S; Weaver JD; Di Prima M
    J Biomed Mater Res B Appl Biomater; 2017 Nov; 105(8):2487-2494. PubMed ID: 27660927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effect of Sensitization on the Susceptibility of AISI 316L Biomaterial to Pitting Corrosion.
    Zatkalíková V; Uhríčik M; Markovičová L; Pastierovičová L; Kuchariková L
    Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37630005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical properties of suprastructures galvanically coupled to a titanium implant.
    Oh KT; Kim KN
    J Biomed Mater Res B Appl Biomater; 2004 Aug; 70(2):318-31. PubMed ID: 15264315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Ti-C:H coating and plasma nitriding treatment on tribological, electrochemical, and biocompatibility properties of AISI 316L.
    Kao WH; Su YL; Horng JH; Zhang KX
    J Biomater Appl; 2016 Aug; 31(2):215-29. PubMed ID: 27422714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Cathodic Polarisation Switch-Off on the Passivity and Stability to Crevice Corrosion of AISI 304L Stainless Steel.
    Shubina Helbert V; Nazarov A; Vucko F; Larché N; Thierry D
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34071568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.