These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 33272166)
61. Recent trends in oral transmucosal drug delivery systems: an emphasis on the soft palatal route. Satheesh Madhav NV; Semwal R; Semwal DK; Semwal RB Expert Opin Drug Deliv; 2012 Jun; 9(6):629-47. PubMed ID: 22512535 [TBL] [Abstract][Full Text] [Related]
62. Oral Absorption Promoters: Opportunities, Issues, and Challenges. Yewale C; Patil S; Kolate A; Kore G; Misra A Crit Rev Ther Drug Carrier Syst; 2015; 32(5):363-87. PubMed ID: 26559432 [TBL] [Abstract][Full Text] [Related]
63. Oral transmucosal drug delivery for pediatric use. Lam JK; Xu Y; Worsley A; Wong IC Adv Drug Deliv Rev; 2014 Jun; 73():50-62. PubMed ID: 23999459 [TBL] [Abstract][Full Text] [Related]
64. Interplay of metabolism and transport in determining oral drug absorption and gut wall metabolism: a simulation assessment using the "Advanced Dissolution, Absorption, Metabolism (ADAM)" model. Darwich AS; Neuhoff S; Jamei M; Rostami-Hodjegan A Curr Drug Metab; 2010 Nov; 11(9):716-29. PubMed ID: 21189140 [TBL] [Abstract][Full Text] [Related]
65. Self microemulsifying drug delivery system of lurasidone hydrochloride for enhanced oral bioavailability by lymphatic targeting: In vitro, Caco-2 cell line and in vivo evaluation. Patel MH; Sawant KK Eur J Pharm Sci; 2019 Oct; 138():105027. PubMed ID: 31377133 [TBL] [Abstract][Full Text] [Related]
66. Lipoamino acids as major components of absorption promoters in drug delivery. Ziora ZM; Blaskovich MA; Toth I; Cooper MA Curr Top Med Chem; 2012; 12(14):1562-80. PubMed ID: 22827525 [TBL] [Abstract][Full Text] [Related]
67. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Porter CJ; Trevaskis NL; Charman WN Nat Rev Drug Discov; 2007 Mar; 6(3):231-48. PubMed ID: 17330072 [TBL] [Abstract][Full Text] [Related]
68. Nanocrystals for Improving Oral Bioavailability of Drugs: Intestinal Transport Mechanisms and Influencing Factors. Tian Z; Mai Y; Meng T; Ma S; Gou G; Yang J AAPS PharmSciTech; 2021 Jun; 22(5):179. PubMed ID: 34128132 [TBL] [Abstract][Full Text] [Related]
69. Colon-targeted oral drug delivery systems: design trends and approaches. Amidon S; Brown JE; Dave VS AAPS PharmSciTech; 2015 Aug; 16(4):731-41. PubMed ID: 26070545 [TBL] [Abstract][Full Text] [Related]
70. Lymphatic transport and catabolism of therapeutic proteins after subcutaneous administration to rats and dogs. Wang W; Chen N; Shen X; Cunningham P; Fauty S; Michel K; Wang B; Hong X; Adreani C; Nunes CN; Johnson CV; Yin KC; Groff M; Zou Y; Liu L; Hamuro L; Prueksaritanont T Drug Metab Dispos; 2012 May; 40(5):952-62. PubMed ID: 22328584 [TBL] [Abstract][Full Text] [Related]
72. Lymphatic transport of puerarin occurs after oral administration of different lipid-based formulations to unconscious lymph duct-cannulated rats. Zhou A; Lu T; Wang L; Lu C; Wang L; Wan M; Wu H Pharm Dev Technol; 2014 Sep; 19(6):743-7. PubMed ID: 23978005 [TBL] [Abstract][Full Text] [Related]
73. The oral absorption of phospholipid prodrugs: in vivo and in vitro mechanistic investigation of trafficking of a lecithin-valproic acid conjugate following oral administration. Dahan A; Duvdevani R; Shapiro I; Elmann A; Finkelstein E; Hoffman A J Control Release; 2008 Feb; 126(1):1-9. PubMed ID: 18082281 [TBL] [Abstract][Full Text] [Related]
74. Intestinal Lymphatic Transport: an Overlooked Pathway for Understanding Absorption of Plant Secondary Compounds in Vertebrate Herbivores. Kohl KD; Dearing MD J Chem Ecol; 2017 Mar; 43(3):290-294. PubMed ID: 28255942 [TBL] [Abstract][Full Text] [Related]
75. An update on the potential role of intestinal first-pass metabolism for the prediction of drug-drug interactions: the role of PBPK modeling. Alqahtani S; Bukhari I; Albassam A; Alenazi M Expert Opin Drug Metab Toxicol; 2018 Jun; 14(6):625-634. PubMed ID: 29806951 [TBL] [Abstract][Full Text] [Related]
76. A review of advanced oral drug delivery technologies facilitating the protection and absorption of protein and peptide molecules. Choonara BF; Choonara YE; Kumar P; Bijukumar D; du Toit LC; Pillay V Biotechnol Adv; 2014 Nov; 32(7):1269-1282. PubMed ID: 25099657 [TBL] [Abstract][Full Text] [Related]
77. Intestinal lymphatic drug transport: an update. Porter CJ; Charman WN Adv Drug Deliv Rev; 2001 Aug; 50(1-2):61-80. PubMed ID: 11489334 [TBL] [Abstract][Full Text] [Related]
78. Intestinal delivery in a long-chain fatty acid formulation enables lymphatic transport and systemic exposure of orlistat. Lee G; Han S; Lu Z; Hong J; Phillips ARJ; Windsor JA; Porter CJH; Trevaskis NL Int J Pharm; 2021 Mar; 596():120247. PubMed ID: 33486039 [TBL] [Abstract][Full Text] [Related]
79. Polymeric micelles for oral drug administration enabling locoregional and systemic treatments. Simões SM; Figueiras AR; Veiga F; Concheiro A; Alvarez-Lorenzo C Expert Opin Drug Deliv; 2015 Feb; 12(2):297-318. PubMed ID: 25227130 [TBL] [Abstract][Full Text] [Related]
80. Filled carbon nanotubes in biomedical imaging and drug delivery. Martincic M; Tobias G Expert Opin Drug Deliv; 2015 Apr; 12(4):563-81. PubMed ID: 25430876 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]