These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
343 related articles for article (PubMed ID: 33272662)
1. Bioaugmentation with copper tolerant endophyte Pseudomonas lurida strain EOO26 for improved plant growth and copper phytoremediation by Helianthus annuus. Kumar A; Tripti ; Voropaeva O; Maleva M; Panikovskaya K; Borisova G; Rajkumar M; Bruno LB Chemosphere; 2021 Mar; 266():128983. PubMed ID: 33272662 [TBL] [Abstract][Full Text] [Related]
2. Synergistic effect of ACC deaminase producing Pseudomonas sp. TR15a and siderophore producing Bacillus aerophilus TR15c for enhanced growth and copper accumulation in Helianthus annuus L. Kumar A; Tripti ; Maleva M; Bruno LB; Rajkumar M Chemosphere; 2021 Aug; 276():130038. PubMed ID: 33690033 [TBL] [Abstract][Full Text] [Related]
3. Serpentine endophytic bacterium Pseudomonas azotoformans ASS1 accelerates phytoremediation of soil metals under drought stress. Ma Y; Rajkumar M; Moreno A; Zhang C; Freitas H Chemosphere; 2017 Oct; 185():75-85. PubMed ID: 28686889 [TBL] [Abstract][Full Text] [Related]
4. Mitigation of Copper Stress in Maize (Zea mays) and Sunflower (Helianthus annuus) Plants by Copper-resistant Pseudomonas Strains. Abbaszadeh-Dahaji P; Atajan FA; Omidvari M; Tahan V; Kariman K Curr Microbiol; 2021 Apr; 78(4):1335-1343. PubMed ID: 33646377 [TBL] [Abstract][Full Text] [Related]
5. Brevundimonas diminuta MYS6 associated Helianthus annuus L. for enhanced copper phytoremediation. Rathi M; K N Y Chemosphere; 2021 Jan; 263():128195. PubMed ID: 33297160 [TBL] [Abstract][Full Text] [Related]
6. The effect of Cu-resistant plant growth-promoting rhizobacteria and EDTA on phytoremediation efficiency of plants in a Cu-contaminated soil. Abbaszadeh-Dahaji P; Baniasad-Asgari A; Hamidpour M Environ Sci Pollut Res Int; 2019 Nov; 26(31):31822-31833. PubMed ID: 31487012 [TBL] [Abstract][Full Text] [Related]
7. Copper-resistant bacteria enhance plant growth and copper phytoextraction. Yang R; Luo C; Chen Y; Wang G; Xu Y; Shen Z Int J Phytoremediation; 2013; 15(6):573-84. PubMed ID: 23819298 [TBL] [Abstract][Full Text] [Related]
8. Pseudomonas sp. AF-54 containing multiple plant beneficial traits acts as growth enhancer of Helianthus annuus L. under reduced fertilizer input. Majeed A; Kaleem Abbasi M; Hameed S; Yasmin S; Hanif MK; Naqqash T; Imran A Microbiol Res; 2018 Nov; 216():56-69. PubMed ID: 30269857 [TBL] [Abstract][Full Text] [Related]
9. Identification and characterization of plant growth-promoting endophyte RE02 from Trifolium repens L. in mining smelter. Liu C; Lin H; Dong Y; Li B; Wang L Environ Sci Pollut Res Int; 2019 Jun; 26(17):17236-17247. PubMed ID: 31012069 [TBL] [Abstract][Full Text] [Related]
10. Isolation, characterization and the effect of indigenous heavy metal-resistant plant growth-promoting bacteria on sorghum grown in acid mine drainage polluted soils. Wu Z; Kong Z; Lu S; Huang C; Huang S; He Y; Wu L J Gen Appl Microbiol; 2019 Dec; 65(5):254-264. PubMed ID: 31243191 [TBL] [Abstract][Full Text] [Related]
11. Effect of Pseudomonas putida-producing pyoverdine on copper uptake by Helianthus annuus cultivated on vineyard soils. Emmeline D; Alexandra L; Hervé C; Pierre G; Jean-Yves C; Thierry L Sci Total Environ; 2022 Feb; 809():152113. PubMed ID: 34875330 [TBL] [Abstract][Full Text] [Related]
12. Endophytic bacteria take the challenge to improve Cu phytoextraction by sunflower. Kolbas A; Kidd P; Guinberteau J; Jaunatre R; Herzig R; Mench M Environ Sci Pollut Res Int; 2015 Apr; 22(7):5370-82. PubMed ID: 25561255 [TBL] [Abstract][Full Text] [Related]
13. Enhanced accumulation of copper and lead in amaranth (Amaranthus paniculatus), Indian mustard (Brassica juncea) and sunflower (Helianthus annuus). Rahman MM; Azirun SM; Boyce AN PLoS One; 2013; 8(5):e62941. PubMed ID: 23667546 [TBL] [Abstract][Full Text] [Related]
14. Nickel and copper accumulation strategies in Odontarrhena obovata growing on copper smelter-influenced and non-influenced serpentine soils: a comparative field study. Tripti ; Kumar A; Maleva M; Borisova G; Chukina N; Morozova M; Kiseleva I Environ Geochem Health; 2021 Apr; 43(4):1401-1413. PubMed ID: 32347513 [TBL] [Abstract][Full Text] [Related]
15. Copper-tolerant rhizosphere bacteria-characterization and assessment of plant growth promoting factors. Rathi M; Nandabalan YK Environ Sci Pollut Res Int; 2017 Apr; 24(10):9723-9733. PubMed ID: 28251535 [TBL] [Abstract][Full Text] [Related]
17. Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens. Chen YX; Wang YP; Lin Q; Luo YM Environ Int; 2005 Aug; 31(6):861-6. PubMed ID: 16005516 [TBL] [Abstract][Full Text] [Related]
18. Characterization of metal-resistant plant-growth promoting Bacillus weihenstephanensis isolated from serpentine soil in Portugal. Rajkumar M; Ma Y; Freitas H J Basic Microbiol; 2008 Dec; 48(6):500-8. PubMed ID: 18785659 [TBL] [Abstract][Full Text] [Related]
19. Increased growth and root Cu accumulation of Sorghum sudanense by endophytic Enterobacter sp. K3-2: Implications for Sorghum sudanense biomass production and phytostabilization. Li Y; Wang Q; Wang L; He LY; Sheng XF Ecotoxicol Environ Saf; 2016 Feb; 124():163-168. PubMed ID: 26517728 [TBL] [Abstract][Full Text] [Related]
20. Effect of endosulfan tolerant bacterial isolates (Delftia lacustris IITISM30 and Klebsiella aerogenes IITISM42) with Helianthus annuus on remediation of endosulfan from contaminated soil. Rani R; Kumar V; Gupta P; Chandra A Ecotoxicol Environ Saf; 2019 Jan; 168():315-323. PubMed ID: 30390530 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]