These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 33272829)

  • 1. Fukutin-Related Protein: From Pathology to Treatments.
    Ortiz-Cordero C; Azzag K; Perlingeiro RCR
    Trends Cell Biol; 2021 Mar; 31(3):197-210. PubMed ID: 33272829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zebrafish models for human FKRP muscular dystrophies.
    Kawahara G; Guyon JR; Nakamura Y; Kunkel LM
    Hum Mol Genet; 2010 Feb; 19(4):623-33. PubMed ID: 19955119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FKRP mutations cause congenital muscular dystrophy 1C and limb-girdle muscular dystrophy 2I in Asian patients.
    Awano H; Saito Y; Shimizu M; Sekiguchi K; Niijima S; Matsuo M; Maegaki Y; Izumi I; Kikuchi C; Ishibashi M; Okazaki T; Komaki H; Iijima K; Nishino I
    J Clin Neurosci; 2021 Oct; 92():215-221. PubMed ID: 34509255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FKRP-dependent glycosylation of fibronectin regulates muscle pathology in muscular dystrophy.
    Wood AJ; Lin CH; Li M; Nishtala K; Alaei S; Rossello F; Sonntag C; Hersey L; Miles LB; Krisp C; Dudczig S; Fulcher AJ; Gibertini S; Conroy PJ; Siegel A; Mora M; Jusuf P; Packer NH; Currie PD
    Nat Commun; 2021 May; 12(1):2951. PubMed ID: 34012031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Refining genotype phenotype correlations in muscular dystrophies with defective glycosylation of dystroglycan.
    Godfrey C; Clement E; Mein R; Brockington M; Smith J; Talim B; Straub V; Robb S; Quinlivan R; Feng L; Jimenez-Mallebrera C; Mercuri E; Manzur AY; Kinali M; Torelli S; Brown SC; Sewry CA; Bushby K; Topaloglu H; North K; Abbs S; Muntoni F
    Brain; 2007 Oct; 130(Pt 10):2725-35. PubMed ID: 17878207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A universal gene correction approach for FKRP-associated dystroglycanopathies to enable autologous cell therapy.
    Dhoke NR; Kim H; Selvaraj S; Azzag K; Zhou H; Oliveira NAJ; Tungtur S; Ortiz-Cordero C; Kiley J; Lu QL; Bang AG; Perlingeiro RCR
    Cell Rep; 2021 Jul; 36(2):109360. PubMed ID: 34260922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new patient-derived iPSC model for dystroglycanopathies validates a compound that increases glycosylation of α-dystroglycan.
    Kim J; Lana B; Torelli S; Ryan D; Catapano F; Ala P; Luft C; Stevens E; Konstantinidis E; Louzada S; Fu B; Paredes-Redondo A; Chan AE; Yang F; Stemple DL; Liu P; Ketteler R; Selwood DL; Muntoni F; Lin YY
    EMBO Rep; 2019 Nov; 20(11):e47967. PubMed ID: 31566294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autologous intramuscular transplantation of engineered satellite cells induces exosome-mediated systemic expression of Fukutin-related protein and rescues disease phenotype in a murine model of limb-girdle muscular dystrophy type 2I.
    Frattini P; Villa C; De Santis F; Meregalli M; Belicchi M; Erratico S; Bella P; Raimondi MT; Lu Q; Torrente Y
    Hum Mol Genet; 2017 Oct; 26(19):3682-3698. PubMed ID: 28666318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FKRP directed fibronectin glycosylation: A novel mechanism giving insights into muscular dystrophies?
    Boyd A; Montandon M; Wood AJ; Currie PD
    Bioessays; 2022 May; 44(5):e2100270. PubMed ID: 35229908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NAD+ enhances ribitol and ribose rescue of α-dystroglycan functional glycosylation in human FKRP-mutant myotubes.
    Ortiz-Cordero C; Magli A; Dhoke NR; Kuebler T; Selvaraj S; Oliveira NA; Zhou H; Sham YY; Bang AG; Perlingeiro RC
    Elife; 2021 Jan; 10():. PubMed ID: 33513091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient engraftment of pluripotent stem cell-derived myogenic progenitors in a novel immunodeficient mouse model of limb girdle muscular dystrophy 2I.
    Azzag K; Ortiz-Cordero C; Oliveira NAJ; Magli A; Selvaraj S; Tungtur S; Upchurch W; Iaizzo PA; Lu QL; Perlingeiro RCR
    Skelet Muscle; 2020 Apr; 10(1):10. PubMed ID: 32321586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental defects in a zebrafish model for muscular dystrophies associated with the loss of fukutin-related protein (FKRP).
    Thornhill P; Bassett D; Lochmüller H; Bushby K; Straub V
    Brain; 2008 Jun; 131(Pt 6):1551-61. PubMed ID: 18477595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adeno-associated virus-mediated overexpression of LARGE rescues α-dystroglycan function in dystrophic mice with mutations in the fukutin-related protein.
    Vannoy CH; Xu L; Keramaris E; Lu P; Xiao X; Lu QL
    Hum Gene Ther Methods; 2014 Jun; 25(3):187-96. PubMed ID: 24635668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defective autophagy and increased apoptosis contribute toward the pathogenesis of FKRP-associated muscular dystrophies.
    Ortiz-Cordero C; Bincoletto C; Dhoke NR; Selvaraj S; Magli A; Zhou H; Kim DH; Bang AG; Perlingeiro RCR
    Stem Cell Reports; 2021 Nov; 16(11):2752-2767. PubMed ID: 34653404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NAD+ improves neuromuscular development in a zebrafish model of FKRP-associated dystroglycanopathy.
    Bailey EC; Alrowaished SS; Kilroy EA; Crooks ES; Drinkert DM; Karunasiri CM; Belanger JJ; Khalil A; Kelley JB; Henry CA
    Skelet Muscle; 2019 Aug; 9(1):21. PubMed ID: 31391079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fukutin-related protein is essential for mouse muscle, brain and eye development and mutation recapitulates the wide clinical spectrums of dystroglycanopathies.
    Chan YM; Keramaris-Vrantsis E; Lidov HG; Norton JH; Zinchenko N; Gruber HE; Thresher R; Blake DJ; Ashar J; Rosenfeld J; Lu QL
    Hum Mol Genet; 2010 Oct; 19(20):3995-4006. PubMed ID: 20675713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Residual laminin-binding activity and enhanced dystroglycan glycosylation by LARGE in novel model mice to dystroglycanopathy.
    Kanagawa M; Nishimoto A; Chiyonobu T; Takeda S; Miyagoe-Suzuki Y; Wang F; Fujikake N; Taniguchi M; Lu Z; Tachikawa M; Nagai Y; Tashiro F; Miyazaki J; Tajima Y; Takeda S; Endo T; Kobayashi K; Campbell KP; Toda T
    Hum Mol Genet; 2009 Feb; 18(4):621-31. PubMed ID: 19017726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abnormal vascular development in zebrafish models for fukutin and FKRP deficiency.
    Wood AJ; Müller JS; Jepson CD; Laval SH; Lochmüller H; Bushby K; Barresi R; Straub V
    Hum Mol Genet; 2011 Dec; 20(24):4879-90. PubMed ID: 21926082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zebrafish Fukutin family proteins link the unfolded protein response with dystroglycanopathies.
    Lin YY; White RJ; Torelli S; Cirak S; Muntoni F; Stemple DL
    Hum Mol Genet; 2011 May; 20(9):1763-75. PubMed ID: 21317159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolomics Analysis of Skeletal Muscles from FKRP-Deficient Mice Indicates Improvement After Gene Replacement Therapy.
    Vannoy CH; Leroy V; Broniowska K; Lu QL
    Sci Rep; 2019 Jul; 9(1):10070. PubMed ID: 31296900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.