These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 33273013)

  • 1. Conformational dynamics during high-fidelity DNA replication and translocation defined using a DNA polymerase with a fluorescent artificial amino acid.
    Dangerfield TL; Johnson KA
    J Biol Chem; 2021; 296():100143. PubMed ID: 33273013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimized incorporation of an unnatural fluorescent amino acid affords measurement of conformational dynamics governing high-fidelity DNA replication.
    Dangerfield TL; Johnson KA
    J Biol Chem; 2020 Dec; 295(50):17265-17280. PubMed ID: 33020184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pre-steady-state kinetic analysis of processive DNA replication including complete characterization of an exonuclease-deficient mutant.
    Patel SS; Wong I; Johnson KA
    Biochemistry; 1991 Jan; 30(2):511-25. PubMed ID: 1846298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational dynamics during misincorporation and mismatch extension defined using a DNA polymerase with a fluorescent artificial amino acid.
    Dangerfield TL; Kirmizialtin S; Johnson KA
    J Biol Chem; 2022 Jan; 298(1):101451. PubMed ID: 34838820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of a GAG hinge in the nucleotide-induced conformational change governing nucleotide specificity by T7 DNA polymerase.
    Jin Z; Johnson KA
    J Biol Chem; 2011 Jan; 286(2):1312-22. PubMed ID: 20978284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of nucleotide insertion and extension at 8-oxo-7,8-dihydroguanine by replicative T7 polymerase exo- and human immunodeficiency virus-1 reverse transcriptase using steady-state and pre-steady-state kinetics.
    Furge LL; Guengerich FP
    Biochemistry; 1997 May; 36(21):6475-87. PubMed ID: 9174365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of induced fit in enzyme specificity: a molecular forward/reverse switch.
    Johnson KA
    J Biol Chem; 2008 Sep; 283(39):26297-301. PubMed ID: 18544537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient state kinetics of transcription elongation by T7 RNA polymerase.
    Anand VS; Patel SS
    J Biol Chem; 2006 Nov; 281(47):35677-85. PubMed ID: 17005565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Switching between Exonucleolysis and Replication by T7 DNA Polymerase Ensures High Fidelity.
    Hoekstra TP; Depken M; Lin SN; Cabanas-Danés J; Gross P; Dame RT; Peterman EJG; Wuite GJL
    Biophys J; 2017 Feb; 112(4):575-583. PubMed ID: 28256218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new paradigm for DNA polymerase specificity.
    Tsai YC; Johnson KA
    Biochemistry; 2006 Aug; 45(32):9675-87. PubMed ID: 16893169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational dynamics of DNA polymerase probed with a novel fluorescent DNA base analogue.
    Stengel G; Gill JP; Sandin P; Wilhelmsson LM; Albinsson B; Nordén B; Millar D
    Biochemistry; 2007 Oct; 46(43):12289-97. PubMed ID: 17915941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An induced-fit kinetic mechanism for DNA replication fidelity: direct measurement by single-turnover kinetics.
    Wong I; Patel SS; Johnson KA
    Biochemistry; 1991 Jan; 30(2):526-37. PubMed ID: 1846299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of nucleotide incorporation: snapshots revealed by 2-aminopurine fluorescence studies.
    Hariharan C; Bloom LB; Helquist SA; Kool ET; Reha-Krantz LJ
    Biochemistry; 2006 Mar; 45(9):2836-44. PubMed ID: 16503638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pre-steady-state kinetics of nucleotide insertion following 8-oxo-7,8-dihydroguanine base pair mismatches by bacteriophage T7 DNA polymerase exo-.
    Furge LL; Guengerich FP
    Biochemistry; 1998 Mar; 37(10):3567-74. PubMed ID: 9521678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-specific labeling of T7 DNA polymerase with a conformationally sensitive fluorophore and its use in detecting single-nucleotide polymorphisms.
    Tsai YC; Jin Z; Johnson KA
    Anal Biochem; 2009 Jan; 384(1):136-44. PubMed ID: 18834851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of nucleotide incorporation opposite DNA bulky guanine N2 adducts by processive bacteriophage T7 DNA polymerase (exonuclease-) and HIV-1 reverse transcriptase.
    Zang H; Harris TM; Guengerich FP
    J Biol Chem; 2005 Jan; 280(2):1165-78. PubMed ID: 15533946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the structural dynamics of the bacteriophage T7 DNA polymerase and its complexes.
    Magill DJ; McGrath JW; O'Flaherty V; Quinn JP; Kulakov LA
    J Mol Model; 2018 Jun; 24(7):144. PubMed ID: 29858666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and interpretation of experiments to establish enzyme pathway and define the role of conformational changes in enzyme specificity.
    Dangerfield TL; Johnson KA
    Methods Enzymol; 2023; 685():461-492. PubMed ID: 37245912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding Affinities among DNA Helicase-Primase, DNA Polymerase, and Replication Intermediates in the Replisome of Bacteriophage T7.
    Zhang H; Tang Y; Lee SJ; Wei Z; Cao J; Richardson CC
    J Biol Chem; 2016 Jan; 291(3):1472-80. PubMed ID: 26620561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of nucleotide incorporation opposite polycyclic aromatic hydrocarbon-DNA adducts by processive bacteriophage T7 DNA polymerase.
    Zang H; Harris TM; Guengerich FP
    Chem Res Toxicol; 2005 Feb; 18(2):389-400. PubMed ID: 15720147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.