These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 33273600)

  • 1. Generation, analysis, and transformation of macro-chloroplast Potato (Solanum tuberosum) lines for chloroplast biotechnology.
    Occhialini A; Pfotenhauer AC; Frazier TP; Li L; Harbison SA; Lail AJ; Mebane Z; Piatek AA; Rigoulot SB; Daniell H; Stewart CN; Lenaghan SC
    Sci Rep; 2020 Dec; 10(1):21144. PubMed ID: 33273600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plastid transformation in potato: Solanum tuberosum.
    Valkov VT; Gargano D; Scotti N; Cardi T
    Methods Mol Biol; 2014; 1132():295-303. PubMed ID: 24599861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plastid Transformation in Potato: An Important Source of Nutrition and Industrial Materials.
    Valkov VT; Gargano D; Cardi T; Scotti N
    Methods Mol Biol; 2021; 2317():247-256. PubMed ID: 34028773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Somatic hybrids among transgenic Solanum tuberosum and transplastomic Solanum rickii].
    Marveeva NA; ShakhovskiÄ­ AM; Kuchuk NV
    Tsitol Genet; 2008; 42(4):38-44. PubMed ID: 19140429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plastid transformation in eggplant.
    Bansal KC; Singh AK
    Methods Mol Biol; 2014; 1132():305-16. PubMed ID: 24599862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plastid transformation in sugar beet: Beta vulgaris.
    De Marchis F; Bellucci M
    Methods Mol Biol; 2014; 1132():367-73. PubMed ID: 24599867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic Engineering of Potato (Solanum tuberosum) Chloroplasts Using the Small Synthetic Plastome "Mini-Synplastome".
    Occhialini A; Pfotenhauer AC; Daniell H; Neal Stewart C; Lenaghan SC
    Methods Mol Biol; 2023; 2653():73-92. PubMed ID: 36995620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional and Metabolic Profiling of Potato Plants Expressing a Plastid-Targeted Electron Shuttle Reveal Modulation of Genes Associated to Drought Tolerance by Chloroplast Redox Poise.
    Karlusich JJP; Arce RC; Shahinnia F; Sonnewald S; Sonnewald U; Zurbriggen MD; Hajirezaei MR; Carrillo N
    Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 33003500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plastid transformation in cabbage (Brassica oleracea L. var. capitata L.) by the biolistic process.
    Tseng MJ; Yang MT; Chu WR; Liu CW
    Methods Mol Biol; 2014; 1132():355-66. PubMed ID: 24599866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chloroplast Transformation in Arabidopsis.
    Ruf S; Kroop X; Bock R
    Curr Protoc; 2021 Apr; 1(4):e103. PubMed ID: 33905600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plastid transformation in tomato.
    Ruf S; Bock R
    Methods Mol Biol; 2014; 1132():265-76. PubMed ID: 24599859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering plastid genomes: methods, tools, and applications in basic research and biotechnology.
    Bock R
    Annu Rev Plant Biol; 2015; 66():211-41. PubMed ID: 25494465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic engineering of the chloroplast: novel tools and new applications.
    Bock R
    Curr Opin Biotechnol; 2014 Apr; 26():7-13. PubMed ID: 24679252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of plastid transformation efficiency in potato by using vectors with homologous flanking sequences.
    Scotti N; Valkov VT; Cardi T
    GM Crops; 2011; 2(2):89-91. PubMed ID: 21865861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Chloroplast genetic engineering: a new approach in plant biotechnology].
    Su T; Zhan YG; Han M; Hao AP
    Sheng Wu Gong Cheng Xue Bao; 2005 Jul; 21(4):674-80. PubMed ID: 16176114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Stable transformation of Solanum rickii chloroplast DNA].
    Matveeva NA; ShakhovskiÄ­ AM; Kuchuk NV
    Tsitol Genet; 2005; 39(5):3-8. PubMed ID: 16398139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of Brassica oleracea FtsZ1-1 and MinD alters chloroplast division in Nicotiana tabacum generating macro- and mini-chloroplasts.
    Chikkala VR; Nugent GD; Stalker DM; Mouradov A; Stevenson TW
    Plant Cell Rep; 2012 May; 31(5):917-28. PubMed ID: 22193339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plastid Transformation: How Does it Work? Can it Be Applied to Crops? What Can it Offer?
    Yu Y; Yu PC; Chang WJ; Yu K; Lin CS
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32659946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-efficiency generation of fertile transplastomic Arabidopsis plants.
    Ruf S; Forner J; Hasse C; Kroop X; Seeger S; Schollbach L; Schadach A; Bock R
    Nat Plants; 2019 Mar; 5(3):282-289. PubMed ID: 30778165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering Chloroplasts for High-Level Constitutive or Inducible Transgene Expression.
    Bock R
    Methods Mol Biol; 2021; 2317():77-94. PubMed ID: 34028763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.