BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 33273691)

  • 1. Cyclic on-chip bacteria separation and preconcentration.
    Ryzhkov VV; Zverev AV; Echeistov VV; Andronic M; Ryzhikov IA; Budashov IA; Eremenko AV; Kurochkin IN; Rodionov IA
    Sci Rep; 2020 Dec; 10(1):21107. PubMed ID: 33273691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial chemotaxis-enabled autonomous sorting of nanoparticles of comparable sizes.
    Suh S; Traore MA; Behkam B
    Lab Chip; 2016 Apr; 16(7):1254-60. PubMed ID: 26940033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast fluorometric enumeration of E. coli using passive chip.
    Kasap EN; Doğan Ü; Çoğun F; Yıldırım E; Boyacı İH; Çetin D; Suludere Z; Tamer U; Ertaş N
    J Microbiol Methods; 2019 Sep; 164():105680. PubMed ID: 31381980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High throughput multilayer microfluidic particle separation platform using embedded thermoplastic-based micropumping.
    Didar TF; Li K; Tabrizian M; Veres T
    Lab Chip; 2013 Jul; 13(13):2615-22. PubMed ID: 23640083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hydrodynamic-based dual-function microfluidic chip for high throughput discriminating tumor cells.
    Wei YJ; Wei X; Zhang X; Wu CX; Cai JY; Chen ML; Wang JH
    Talanta; 2024 Jun; 273():125884. PubMed ID: 38508128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous-flow microfluidic blood cell sorting for unprocessed whole blood using surface-micromachined microfiltration membranes.
    Li X; Chen W; Liu G; Lu W; Fu J
    Lab Chip; 2014 Jul; 14(14):2565-75. PubMed ID: 24895109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A bubble- and clogging-free microfluidic particle separation platform with multi-filtration.
    Cheng Y; Wang Y; Ma Z; Wang W; Ye X
    Lab Chip; 2016 Nov; 16(23):4517-4526. PubMed ID: 27792227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput and clogging-free microfluidic filtration platform for on-chip cell separation from undiluted whole blood.
    Cheng Y; Ye X; Ma Z; Xie S; Wang W
    Biomicrofluidics; 2016 Jan; 10(1):014118. PubMed ID: 26909124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated microdevice for preconcentration and separation of a wide variety of compounds by electrochromatography.
    Proczek G; Augustin V; Descroix S; Hennion MC
    Electrophoresis; 2009 Feb; 30(3):515-24. PubMed ID: 19156759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic cell sorter with integrated piezoelectric actuator.
    Chen CH; Cho SH; Tsai F; Erten A; Lo YH
    Biomed Microdevices; 2009 Dec; 11(6):1223-31. PubMed ID: 19649710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined microfluidic-micromagnetic separation of living cells in continuous flow.
    Xia N; Hunt TP; Mayers BT; Alsberg E; Whitesides GM; Westervelt RM; Ingber DE
    Biomed Microdevices; 2006 Dec; 8(4):299-308. PubMed ID: 17003962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid preconcentration of viable bacteria using magnetic ionic liquids for PCR amplification and culture-based diagnostics.
    Clark KD; Purslow JA; Pierson SA; Nacham O; Anderson JL
    Anal Bioanal Chem; 2017 Aug; 409(21):4983-4991. PubMed ID: 28634762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impedimetric detection of bacteria by using a microfluidic chip and silver nanoparticle based signal enhancement.
    Wang R; Xu Y; Sors T; Irudayaraj J; Ren W; Wang R
    Mikrochim Acta; 2018 Feb; 185(3):184. PubMed ID: 29594583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remote-controlled robotic platform ORPHEUS as a new tool for detection of bacteria in the environment.
    Nejdl L; Kudr J; Cihalova K; Chudobova D; Zurek M; Zalud L; Kopecny L; Burian F; Ruttkay-Nedecky B; Krizkova S; Konecna M; Hynek D; Kopel P; Prasek J; Adam V; Kizek R
    Electrophoresis; 2014 Aug; 35(16):2333-45. PubMed ID: 24634313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic particle detection and sorting in an electrokinetic microfluidic chip.
    Song Y; Peng R; Wang J; Pan X; Sun Y; Li D
    Electrophoresis; 2013 Mar; 34(5):684-90. PubMed ID: 23172422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic microfluidic platform for cell separation and nucleus collection.
    Tai CH; Hsiung SK; Chen CY; Tsai ML; Lee GB
    Biomed Microdevices; 2007 Aug; 9(4):533-43. PubMed ID: 17508288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-throughput and sensitive particle counting by a novel microfluidic differential resistive pulse sensor with multidetecting channels and a common reference channel.
    Song Y; Yang J; Pan X; Li D
    Electrophoresis; 2015 Feb; 36(4):495-501. PubMed ID: 25363672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sample Preconcentration Protocols in Microfluidic Electrophoresis.
    Kitagawa F; Otsuka K
    Methods Mol Biol; 2019; 1906():65-78. PubMed ID: 30488385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic pH-sensing chips integrated with pneumatic fluid-control devices.
    Lin CF; Lee GB; Wang CH; Lee HH; Liao WY; Chou TC
    Biosens Bioelectron; 2006 Feb; 21(8):1468-75. PubMed ID: 16099154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Efficiency and High-Throughput On-Chip Exchange of the Continuous Phase in Droplet Microfluidic Systems.
    Kim M; Leong CM; Pan M; Blauch LR; Tang SKY
    SLAS Technol; 2017 Oct; 22(5):529-535. PubMed ID: 28402212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.