BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 33274189)

  • 1. Predicting sites of epitranscriptome modifications using unsupervised representation learning based on generative adversarial networks.
    Salekin S; Mostavi M; Chiu YC; Chen Y; Zhang JM; Huang Y
    Front Phys; 2020 Jun; 8():. PubMed ID: 33274189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive review and assessment of computational methods for predicting RNA post-transcriptional modification sites from RNA sequences.
    Chen Z; Zhao P; Li F; Wang Y; Smith AI; Webb GI; Akutsu T; Baggag A; Bensmail H; Song J
    Brief Bioinform; 2020 Sep; 21(5):1676-1696. PubMed ID: 31714956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. iEnhancer-GAN: A Deep Learning Framework in Combination with Word Embedding and Sequence Generative Adversarial Net to Identify Enhancers and Their Strength.
    Yang R; Wu F; Zhang C; Zhang L
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33808317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Refined RIP-seq protocol for epitranscriptome analysis with low input materials.
    Zeng Y; Wang S; Gao S; Soares F; Ahmed M; Guo H; Wang M; Hua JT; Guan J; Moran MF; Tsao MS; He HH
    PLoS Biol; 2018 Sep; 16(9):e2006092. PubMed ID: 30212448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CiwGAN and fiwGAN: Encoding information in acoustic data to model lexical learning with Generative Adversarial Networks.
    Beguš G
    Neural Netw; 2021 Jul; 139():305-325. PubMed ID: 33873122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GANSamples-ac4C: Enhancing ac4C site prediction via generative adversarial networks and transfer learning.
    Li F; Zhang J; Li K; Peng Y; Zhang H; Xu Y; Yu Y; Zhang Y; Liu Z; Wang Y; Huang L; Zhou F
    Anal Biochem; 2024 Jun; 689():115495. PubMed ID: 38431142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hardness Recognition of Robotic Forearm Based on Semi-supervised Generative Adversarial Networks.
    Qian X; Li E; Zhang J; Zhao SN; Wu QE; Zhang H; Wang W; Wu Y
    Front Neurorobot; 2019; 13():73. PubMed ID: 31551748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images.
    Tong N; Gou S; Yang S; Cao M; Sheng K
    Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A prediction model of stock market trading actions using generative adversarial network and piecewise linear representation approaches.
    Wu JL; Tang XR; Hsu CH
    Soft comput; 2023; 27(12):8209-8222. PubMed ID: 36531755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epitranscriptome Mapping of N
    Law J; Günther S; Watanabe S
    Methods Mol Biol; 2023; 2640():431-443. PubMed ID: 36995611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep-2'-O-Me: Predicting 2'-O-methylation sites by Convolutional Neural Networks.
    Mostavi M; Salekin S; Huang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2394-2397. PubMed ID: 30440889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generative modeling for renal microanatomy.
    Murali LK; Lutnick B; Ginley B; Tomaszewski JE; Sarder P
    Proc SPIE Int Soc Opt Eng; 2020 Feb; 11320():. PubMed ID: 32362707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Weakly supervised learning of RNA modifications from low-resolution epitranscriptome data.
    Huang D; Song B; Wei J; Su J; Coenen F; Meng J
    Bioinformatics; 2021 Jul; 37(Suppl_1):i222-i230. PubMed ID: 34252943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. m6A-Maize: Weakly supervised prediction of m
    Liang Z; Zhang L; Chen H; Huang D; Song B
    Methods; 2022 Jul; 203():226-232. PubMed ID: 34843978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effector-GAN: prediction of fungal effector proteins based on pretrained deep representation learning methods and generative adversarial networks.
    Wang Y; Luo X; Zou Q
    Bioinformatics; 2022 Jul; 38(14):3541-3548. PubMed ID: 35640972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SG-GAN: Adversarial Self-Attention GCN for Point Cloud Topological Parts Generation.
    Li Y; Baciu G
    IEEE Trans Vis Comput Graph; 2022 Oct; 28(10):3499-3512. PubMed ID: 33769934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unsupervised Domain Adaptation for Facial Expression Recognition Using Generative Adversarial Networks.
    Wang X; Wang X; Ni Y
    Comput Intell Neurosci; 2018; 2018():7208794. PubMed ID: 30111995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A joint learning method for incomplete and imbalanced data in electronic health record based on generative adversarial networks.
    Weng X; Song H; Lin Y; Wu Y; Zhang X; Liu B; Yang J
    Comput Biol Med; 2024 Jan; 168():107687. PubMed ID: 38007974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. WalkGAN: Network Representation Learning With Sequence-Based Generative Adversarial Networks.
    Jin T; Yang X; Yu Z; Luo H; Zhang Y; Jie F; Zeng X; Jiang M
    IEEE Trans Neural Netw Learn Syst; 2024 Apr; 35(4):5684-5694. PubMed ID: 36342997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Knowledge-based automated planning with three-dimensional generative adversarial networks.
    Babier A; Mahmood R; McNiven AL; Diamant A; Chan TCY
    Med Phys; 2020 Feb; 47(2):297-306. PubMed ID: 31675444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.