These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Microarray analysis of the Escherichia coli response to CdTe-GSH Quantum Dots: understanding the bacterial toxicity of semiconductor nanoparticles. Monrás JP; Collao B; Molina-Quiroz RC; Pradenas GA; Saona LA; Durán-Toro V; Ordenes-Aenishanslins N; Venegas FA; Loyola DE; Bravo D; Calderón PF; Calderón IL; Vásquez CC; Chasteen TG; Lopez DA; Pérez-Donoso JM BMC Genomics; 2014 Dec; 15(1):1099. PubMed ID: 25496196 [TBL] [Abstract][Full Text] [Related]
3. Comparative Study on the Efficiency of the Photodynamic Inactivation of Candida albicans Using CdTe Quantum Dots, Zn(II) Porphyrin and Their Conjugates as Photosensitizers. Viana OS; Ribeiro MS; Rodas AC; Rebouças JS; Fontes A; Santos BS Molecules; 2015 May; 20(5):8893-912. PubMed ID: 25993419 [TBL] [Abstract][Full Text] [Related]
4. Solubilization and bio-conjugation of quantum dots and bacterial toxicity assays by growth curve and plate count. Park S; Chibli H; Nadeau J J Vis Exp; 2012 Jul; (65):e3969. PubMed ID: 22824953 [TBL] [Abstract][Full Text] [Related]
5. Cooperative antimicrobial activity of CdTe quantum dots with rocephin and fluorescence monitoring for Escherichia coli. Luo Z; Wu Q; Zhang M; Li P; Ding Y J Colloid Interface Sci; 2011 Oct; 362(1):100-6. PubMed ID: 21757199 [TBL] [Abstract][Full Text] [Related]
7. Cytotoxicity of CdTe quantum dots with different surface coatings against yeast Saccharomyces cerevisiae. Han X; Lei J; Chen K; Li Q; Hao H; Zhou T; Jiang FL; Li M; Liu Y Ecotoxicol Environ Saf; 2019 Jun; 174():467-474. PubMed ID: 30852312 [TBL] [Abstract][Full Text] [Related]
8. The NLRP3-Mediated Neuroinflammatory Responses to CdTe Quantum Dots and the Protection of ZnS Shell. Wu T; Liang X; He K; Liu X; Li Y; Wang Y; Kong L; Tang M Int J Nanomedicine; 2020; 15():3217-3233. PubMed ID: 32440120 [TBL] [Abstract][Full Text] [Related]
9. Liver Toxicity of Cadmium Telluride Quantum Dots (CdTe QDs) Due to Oxidative Stress in Vitro and in Vivo. Zhang T; Hu Y; Tang M; Kong L; Ying J; Wu T; Xue Y; Pu Y Int J Mol Sci; 2015 Sep; 16(10):23279-99. PubMed ID: 26404244 [TBL] [Abstract][Full Text] [Related]
10. Dose- and duration-dependent cytotoxicity and genotoxicity in human hepato carcinoma cells due to CdTe QDs exposure. Katubi KM; Alzahrani FM; Ali D; Alarifi S Hum Exp Toxicol; 2019 Aug; 38(8):914-926. PubMed ID: 30995871 [TBL] [Abstract][Full Text] [Related]
11. Enhanced glutathione content allows the in vivo synthesis of fluorescent CdTe nanoparticles by Escherichia coli. Monrás JP; Díaz V; Bravo D; Montes RA; Chasteen TG; Osorio-Román IO; Vásquez CC; Pérez-Donoso JM PLoS One; 2012; 7(11):e48657. PubMed ID: 23185270 [TBL] [Abstract][Full Text] [Related]
12. Intracellular oxidative stress and cadmium ions release induce cytotoxicity of unmodified cadmium sulfide quantum dots. Li KG; Chen JT; Bai SS; Wen X; Song SY; Yu Q; Li J; Wang YQ Toxicol In Vitro; 2009 Sep; 23(6):1007-13. PubMed ID: 19540911 [TBL] [Abstract][Full Text] [Related]
13. Adhesion of quantum dots-induced membrane damage of Escherichia coli. Lai L; Lin C; Xiao CQ; Xu ZQ; Han XL; Fu L; Li DW; Mei P; Jiang FL; Guo QL; Liu Y J Colloid Interface Sci; 2013 Jan; 389(1):61-70. PubMed ID: 23044269 [TBL] [Abstract][Full Text] [Related]
14. Intracellular reactive oxygen species trigger mitochondrial dysfunction and apoptosis in cadmium telluride quantum dots-induced liver damage. Liu Q; Wu D; Ma Y; Cao Y; Pang Y; Tang M; Pu Y; Zhang T NanoImpact; 2022 Jan; 25():100392. PubMed ID: 35559896 [TBL] [Abstract][Full Text] [Related]
15. Molecular mechanism of copper-zinc superoxide dismutase activity change exposed to N-acetyl-L-cysteine-capped CdTe quantum dots-induced oxidative damage in mouse primary hepatocytes and nephrocytes. Sun H; Cui E; Liu R Environ Sci Pollut Res Int; 2015 Nov; 22(22):18267-77. PubMed ID: 26210583 [TBL] [Abstract][Full Text] [Related]
16. CdTe and CdTe@ZnS quantum dots induce IL-1ß-mediated inflammation and pyroptosis in microglia. Liang X; Wu T; Wang Y; Wei T; Zou L; Bai C; Liu N; Zhang T; Xue Y; Tang M Toxicol In Vitro; 2020 Jun; 65():104827. PubMed ID: 32179110 [TBL] [Abstract][Full Text] [Related]
17. Conformational and functional effects of MPA-CdTe quantum dots on SOD: Evaluating the mechanism of oxidative stress induced by quantum dots in the mouse nephrocytes. Hao M; Liu R J Mol Recognit; 2019 Sep; 32(9):e2783. PubMed ID: 31044464 [TBL] [Abstract][Full Text] [Related]
18. Dose and time effect of CdTe quantum dots on antioxidant capacities of the liver and kidneys in mice. Wang J; Sun H; Meng P; Wang M; Tian M; Xiong Y; Zhang X; Huang P Int J Nanomedicine; 2017; 12():6425-6435. PubMed ID: 28919745 [TBL] [Abstract][Full Text] [Related]
19. UV-enhanced cytotoxicity of CdTe quantum dots in PANC-1 cells depend on their size distribution and surface modification. Chang S; Chen D; Kang B; Dai Y J Nanosci Nanotechnol; 2013 Feb; 13(2):751-4. PubMed ID: 23646509 [TBL] [Abstract][Full Text] [Related]
20. Systematic toxicity assessment of CdTe quantum dots in Drosophila melanogaster. Paithankar JG; Kushalan S; S N; Hegde S; Kini S; Sharma A Chemosphere; 2022 May; 295():133836. PubMed ID: 35120950 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]