BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 33274632)

  • 1. Characterization of the Kinetic Mechanism of Human Protein Arginine Methyltransferase 5.
    Eddershaw AR; Stubbs CJ; Edwardes LV; Underwood E; Hamm GR; Davey PRJ; Clarkson PN; Syson K
    Biochemistry; 2020 Dec; 59(50):4775-4786. PubMed ID: 33274632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histone H2A and H4 N-terminal tails are positioned by the MEP50 WD repeat protein for efficient methylation by the PRMT5 arginine methyltransferase.
    Burgos ES; Wilczek C; Onikubo T; Bonanno JB; Jansong J; Reimer U; Shechter D
    J Biol Chem; 2015 Apr; 290(15):9674-89. PubMed ID: 25713080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein arginine methyltransferase 5 catalyzes substrate dimethylation in a distributive fashion.
    Wang M; Fuhrmann J; Thompson PR
    Biochemistry; 2014 Dec; 53(50):7884-92. PubMed ID: 25485739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Structure and Function of the PRMT5:MEP50 Complex.
    Antonysamy S
    Subcell Biochem; 2017; 83():185-194. PubMed ID: 28271477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate specificity, processivity, and kinetic mechanism of protein arginine methyltransferase 5.
    Wang M; Xu RM; Thompson PR
    Biochemistry; 2013 Aug; 52(32):5430-40. PubMed ID: 23866019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of the human PRMT5:MEP50 complex.
    Antonysamy S; Bonday Z; Campbell RM; Doyle B; Druzina Z; Gheyi T; Han B; Jungheim LN; Qian Y; Rauch C; Russell M; Sauder JM; Wasserman SR; Weichert K; Willard FS; Zhang A; Emtage S
    Proc Natl Acad Sci U S A; 2012 Oct; 109(44):17960-5. PubMed ID: 23071334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The PRMT5 arginine methyltransferase: many roles in development, cancer and beyond.
    Stopa N; Krebs JE; Shechter D
    Cell Mol Life Sci; 2015 Jun; 72(11):2041-59. PubMed ID: 25662273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of the arginine methyltransferase PRMT5-MEP50 reveals a mechanism for substrate specificity.
    Ho MC; Wilczek C; Bonanno JB; Xing L; Seznec J; Matsui T; Carter LG; Onikubo T; Kumar PR; Chan MK; Brenowitz M; Cheng RH; Reimer U; Almo SC; Shechter D
    PLoS One; 2013; 8(2):e57008. PubMed ID: 23451136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural studies of protein arginine methyltransferase 2 reveal its interactions with potential substrates and inhibitors.
    Cura V; Marechal N; Troffer-Charlier N; Strub JM; van Haren MJ; Martin NI; Cianférani S; Bonnefond L; Cavarelli J
    FEBS J; 2017 Jan; 284(1):77-96. PubMed ID: 27879050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryo-electron microscopy structure of a human PRMT5:MEP50 complex.
    Timm DE; Bowman V; Madsen R; Rauch C
    PLoS One; 2018; 13(3):e0193205. PubMed ID: 29518110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A protein arginine N-methyltransferase 1 (PRMT1) and 2 heteromeric interaction increases PRMT1 enzymatic activity.
    Pak ML; Lakowski TM; Thomas D; Vhuiyan MI; Hüsecken K; Frankel A
    Biochemistry; 2011 Sep; 50(38):8226-40. PubMed ID: 21851090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient Kinetics Define a Complete Kinetic Model for Protein Arginine Methyltransferase 1.
    Hu H; Luo C; Zheng YG
    J Biol Chem; 2016 Dec; 291(52):26722-26738. PubMed ID: 27834681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RioK1, a new interactor of protein arginine methyltransferase 5 (PRMT5), competes with pICln for binding and modulates PRMT5 complex composition and substrate specificity.
    Guderian G; Peter C; Wiesner J; Sickmann A; Schulze-Osthoff K; Fischer U; Grimmler M
    J Biol Chem; 2011 Jan; 286(3):1976-86. PubMed ID: 21081503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery and Biological Characterization of PRMT5:MEP50 Protein-Protein Interaction Inhibitors.
    Asberry AM; Cai X; Deng X; Santiago U; Liu S; Sims HS; Liang W; Xu X; Wan J; Jiang W; Camacho CJ; Dai M; Hu CD
    J Med Chem; 2022 Oct; 65(20):13793-13812. PubMed ID: 36206451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methylosome Protein 50 and PKCδ/p38δ Protein Signaling Control Keratinocyte Proliferation via Opposing Effects on p21Cip1 Gene Expression.
    Saha K; Eckert RL
    J Biol Chem; 2015 May; 290(21):13521-30. PubMed ID: 25851901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MEP50/PRMT5 Reduces Gene Expression by Histone Arginine Methylation and this Is Reversed by PKCδ/p38δ Signaling.
    Saha K; Adhikary G; Eckert RL
    J Invest Dermatol; 2016 Jan; 136(1):214-224. PubMed ID: 26763441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic mechanism of protein arginine methyltransferase 1.
    Obianyo O; Osborne TC; Thompson PR
    Biochemistry; 2008 Sep; 47(39):10420-7. PubMed ID: 18771293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A TGFβ-PRMT5-MEP50 axis regulates cancer cell invasion through histone H3 and H4 arginine methylation coupled transcriptional activation and repression.
    Chen H; Lorton B; Gupta V; Shechter D
    Oncogene; 2017 Jan; 36(3):373-386. PubMed ID: 27270440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Yeast Hmt1 catalyses asymmetric dimethylation of histone H3 arginine 2 in vitro.
    Li HT; Gong T; Zhou Z; Liu YT; Cao X; He Y; Chen CD; Zhou JQ
    Biochem J; 2015 May; 467(3):507-15. PubMed ID: 25715670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unique Features of Human Protein Arginine Methyltransferase 9 (PRMT9) and Its Substrate RNA Splicing Factor SF3B2.
    Hadjikyriacou A; Yang Y; Espejo A; Bedford MT; Clarke SG
    J Biol Chem; 2015 Jul; 290(27):16723-43. PubMed ID: 25979344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.