These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
296 related articles for article (PubMed ID: 33274641)
1. Applications of deep learning in detection of glaucoma: A systematic review. Mirzania D; Thompson AC; Muir KW Eur J Ophthalmol; 2021 Jul; 31(4):1618-1642. PubMed ID: 33274641 [TBL] [Abstract][Full Text] [Related]
2. A Review of Deep Learning for Screening, Diagnosis, and Detection of Glaucoma Progression. Thompson AC; Jammal AA; Medeiros FA Transl Vis Sci Technol; 2020 Jul; 9(2):42. PubMed ID: 32855846 [TBL] [Abstract][Full Text] [Related]
3. [Artificial intelligence and glaucoma: A literature review]. Bunod R; Augstburger E; Brasnu E; Labbe A; Baudouin C J Fr Ophtalmol; 2022 Feb; 45(2):216-232. PubMed ID: 34991909 [TBL] [Abstract][Full Text] [Related]
4. Artificial intelligence and complex statistical modeling in glaucoma diagnosis and management. Salazar H; Misra V; Swaminathan SS Curr Opin Ophthalmol; 2021 Mar; 32(2):105-117. PubMed ID: 33395111 [TBL] [Abstract][Full Text] [Related]
5. Artificial Intelligence Algorithms to Diagnose Glaucoma and Detect Glaucoma Progression: Translation to Clinical Practice. Mursch-Edlmayr AS; Ng WS; Diniz-Filho A; Sousa DC; Arnold L; Schlenker MB; Duenas-Angeles K; Keane PA; Crowston JG; Jayaram H Transl Vis Sci Technol; 2020 Oct; 9(2):55. PubMed ID: 33117612 [TBL] [Abstract][Full Text] [Related]
6. Interpreting Deep Learning Studies in Glaucoma: Unresolved Challenges. Lee EB; Wang SY; Chang RT Asia Pac J Ophthalmol (Phila); 2021 May-Jun 01; 10(3):261-267. PubMed ID: 34383718 [TBL] [Abstract][Full Text] [Related]
7. Artificial intelligence for glaucoma: state of the art and future perspectives. Correia Barão R; Hemelings R; Abegão Pinto L; Pazos M; Stalmans I Curr Opin Ophthalmol; 2024 Mar; 35(2):104-110. PubMed ID: 38018807 [TBL] [Abstract][Full Text] [Related]
8. Promising Artificial Intelligence-Machine Learning-Deep Learning Algorithms in Ophthalmology. Balyen L; Peto T Asia Pac J Ophthalmol (Phila); 2019; 8(3):264-272. PubMed ID: 31149787 [TBL] [Abstract][Full Text] [Related]
9. [Application of artificial intelligence in glaucoma. Part 1. Neural networks and deep learning in glaucoma screening and diagnosis]. Kurysheva NI; Rodionova OY; Pomerantsev AL; Sharova GA Vestn Oftalmol; 2024; 140(3):82-87. PubMed ID: 38962983 [TBL] [Abstract][Full Text] [Related]
10. The upcoming role of Artificial Intelligence (AI) for retinal and glaucomatous diseases. Ferro Desideri L; Rutigliani C; Corazza P; Nastasi A; Roda M; Nicolo M; Traverso CE; Vagge A J Optom; 2022; 15 Suppl 1(Suppl 1):S50-S57. PubMed ID: 36216736 [TBL] [Abstract][Full Text] [Related]
12. Artificial Intelligence for Glaucoma: Creating and Implementing Artificial Intelligence for Disease Detection and Progression. Al-Aswad LA; Ramachandran R; Schuman JS; Medeiros F; Eydelman MB; Ophthalmol Glaucoma; 2022; 5(5):e16-e25. PubMed ID: 35218987 [TBL] [Abstract][Full Text] [Related]
13. Glaucoma screening: where are we and where do we need to go? Tan NYQ; Friedman DS; Stalmans I; Ahmed IIK; Sng CCA Curr Opin Ophthalmol; 2020 Mar; 31(2):91-100. PubMed ID: 31904596 [TBL] [Abstract][Full Text] [Related]
14. Applications of Artificial Intelligence and Deep Learning in Glaucoma. Chen D; Ran Ran A; Fang Tan T; Ramachandran R; Li F; Cheung CY; Yousefi S; Tham CCY; Ting DSW; Zhang X; Al-Aswad LA Asia Pac J Ophthalmol (Phila); 2023 Jan-Feb 01; 12(1):80-93. PubMed ID: 36706335 [TBL] [Abstract][Full Text] [Related]
15. Deep learning and optical coherence tomography in glaucoma: Bridging the diagnostic gap on structural imaging. Thompson AC; Falconi A; Sappington RM Front Ophthalmol (Lausanne); 2022; 2():937205. PubMed ID: 38983522 [TBL] [Abstract][Full Text] [Related]
17. Deep learning in glaucoma with optical coherence tomography: a review. Ran AR; Tham CC; Chan PP; Cheng CY; Tham YC; Rim TH; Cheung CY Eye (Lond); 2021 Jan; 35(1):188-201. PubMed ID: 33028972 [TBL] [Abstract][Full Text] [Related]
18. Using Deep Learning and Transfer Learning to Accurately Diagnose Early-Onset Glaucoma From Macular Optical Coherence Tomography Images. Asaoka R; Murata H; Hirasawa K; Fujino Y; Matsuura M; Miki A; Kanamoto T; Ikeda Y; Mori K; Iwase A; Shoji N; Inoue K; Yamagami J; Araie M Am J Ophthalmol; 2019 Feb; 198():136-145. PubMed ID: 30316669 [TBL] [Abstract][Full Text] [Related]
19. Human Versus Machine: Comparing a Deep Learning Algorithm to Human Gradings for Detecting Glaucoma on Fundus Photographs. Jammal AA; Thompson AC; Mariottoni EB; Berchuck SI; Urata CN; Estrela T; Wakil SM; Costa VP; Medeiros FA Am J Ophthalmol; 2020 Mar; 211():123-131. PubMed ID: 31730838 [TBL] [Abstract][Full Text] [Related]
20. Deep learning in ophthalmology: The technical and clinical considerations. Ting DSW; Peng L; Varadarajan AV; Keane PA; Burlina PM; Chiang MF; Schmetterer L; Pasquale LR; Bressler NM; Webster DR; Abramoff M; Wong TY Prog Retin Eye Res; 2019 Sep; 72():100759. PubMed ID: 31048019 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]