These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 33274834)
21. 3D Bioprinting of Carbohydrazide-Modified Gelatin into Microparticle-Suspended Oxidized Alginate for the Fabrication of Complex-Shaped Tissue Constructs. Heo DN; Alioglu MA; Wu Y; Ozbolat V; Ayan B; Dey M; Kang Y; Ozbolat IT ACS Appl Mater Interfaces; 2020 May; 12(18):20295-20306. PubMed ID: 32274920 [TBL] [Abstract][Full Text] [Related]
22. 3D-bioprinting of aortic valve interstitial cells: impact of hydrogel and printing parameters on cell viability. Immohr MB; Dos Santos Adrego F; Teichert HL; Schmidt V; Sugimura Y; Bauer S; Barth M; Lichtenberg A; Akhyari P Biomed Mater; 2022 Nov; 18(1):. PubMed ID: 36322974 [TBL] [Abstract][Full Text] [Related]
23. Printability, Durability, Contractility and Vascular Network Formation in 3D Bioprinted Cardiac Endothelial Cells Using Alginate-Gelatin Hydrogels. Roche CD; Sharma P; Ashton AW; Jackson C; Xue M; Gentile C Front Bioeng Biotechnol; 2021; 9():636257. PubMed ID: 33748085 [TBL] [Abstract][Full Text] [Related]
24. Three-dimensional fabrication of thick and densely populated soft constructs with complex and actively perfused channel network. Pimentel C R; Ko SK; Caviglia C; Wolff A; Emnéus J; Keller SS; Dufva M Acta Biomater; 2018 Jan; 65():174-184. PubMed ID: 29102798 [TBL] [Abstract][Full Text] [Related]
25. Crosslinking Strategies for 3D Bioprinting of Polymeric Hydrogels. GhavamiNejad A; Ashammakhi N; Wu XY; Khademhosseini A Small; 2020 Sep; 16(35):e2002931. PubMed ID: 32734720 [TBL] [Abstract][Full Text] [Related]
26. 3D bioprinted mammary organoids and tumoroids in human mammary derived ECM hydrogels. Mollica PA; Booth-Creech EN; Reid JA; Zamponi M; Sullivan SM; Palmer XL; Sachs PC; Bruno RD Acta Biomater; 2019 Sep; 95():201-213. PubMed ID: 31233891 [TBL] [Abstract][Full Text] [Related]
28. Bioprinting a Multifunctional Bioink to Engineer Clickable 3D Cellular Niches with Tunable Matrix Microenvironmental Cues. Pereira RF; Lourenço BN; Bártolo PJ; Granja PL Adv Healthc Mater; 2021 Jan; 10(2):e2001176. PubMed ID: 33135399 [TBL] [Abstract][Full Text] [Related]
29. Bioprinted anisotropic scaffolds with fast stress relaxation bioink for engineering 3D skeletal muscle and repairing volumetric muscle loss. Li T; Hou J; Wang L; Zeng G; Wang Z; Yu L; Yang Q; Yin J; Long M; Chen L; Chen S; Zhang H; Li Y; Wu Y; Huang W Acta Biomater; 2023 Jan; 156():21-36. PubMed ID: 36002128 [TBL] [Abstract][Full Text] [Related]
30. Volumetric Bioprinting of Organoids and Optically Tuned Hydrogels to Build Liver-Like Metabolic Biofactories. Bernal PN; Bouwmeester M; Madrid-Wolff J; Falandt M; Florczak S; Rodriguez NG; Li Y; Größbacher G; Samsom RA; van Wolferen M; van der Laan LJW; Delrot P; Loterie D; Malda J; Moser C; Spee B; Levato R Adv Mater; 2022 Apr; 34(15):e2110054. PubMed ID: 35166410 [TBL] [Abstract][Full Text] [Related]
31. Noninvasive Three-Dimensional Ning L; Zhu N; Smith A; Rajaram A; Hou H; Srinivasan S; Mohabatpour F; He L; Mclnnes A; Serpooshan V; Papagerakis P; Chen X ACS Appl Mater Interfaces; 2021 Jun; 13(22):25611-25623. PubMed ID: 34038086 [TBL] [Abstract][Full Text] [Related]
33. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth environment. Zhang K; Fu Q; Yoo J; Chen X; Chandra P; Mo X; Song L; Atala A; Zhao W Acta Biomater; 2017 Mar; 50():154-164. PubMed ID: 27940192 [TBL] [Abstract][Full Text] [Related]
34. Bioprinting Pattern-Dependent Electrical/Mechanical Behavior of Cardiac Alginate Implants: Characterization and Ex Vivo Phase-Contrast Microtomography Assessment. Izadifar M; Babyn P; Kelly ME; Chapman D; Chen X Tissue Eng Part C Methods; 2017 Sep; 23(9):548-564. PubMed ID: 28726575 [TBL] [Abstract][Full Text] [Related]
35. FABRICA: A Bioreactor Platform for Printing, Perfusing, Observing, & Stimulating 3D Tissues. Smith LJ; Li P; Holland MR; Ekser B Sci Rep; 2018 May; 8(1):7561. PubMed ID: 29765087 [TBL] [Abstract][Full Text] [Related]
36. Aspiration-assisted bioprinting of co-cultured osteogenic spheroids for bone tissue engineering. Heo DN; Ayan B; Dey M; Banerjee D; Wee H; Lewis GS; Ozbolat IT Biofabrication; 2020 Dec; 13(1):. PubMed ID: 33059343 [TBL] [Abstract][Full Text] [Related]
37. Bioprinting EphrinB2-Modified Dental Pulp Stem Cells with Enhanced Osteogenic Capacity for Alveolar Bone Engineering. Wang W; Zhu Y; Li J; Geng T; Jia J; Wang X; Yuan C; Wang P Tissue Eng Part A; 2023 Apr; 29(7-8):244-255. PubMed ID: 36606680 [TBL] [Abstract][Full Text] [Related]
38. FRESH 3D Bioprinting a Full-Size Model of the Human Heart. Mirdamadi E; Tashman JW; Shiwarski DJ; Palchesko RN; Feinberg AW ACS Biomater Sci Eng; 2020 Nov; 6(11):6453-6459. PubMed ID: 33449644 [TBL] [Abstract][Full Text] [Related]
39. 3D bioprinting and microscale organization of vascularized tissue constructs using collagen-based bioink. Muthusamy S; Kannan S; Lee M; Sanjairaj V; Lu WF; Fuh JYH; Sriram G; Cao T Biotechnol Bioeng; 2021 Aug; 118(8):3150-3163. PubMed ID: 34037982 [TBL] [Abstract][Full Text] [Related]
40. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model. Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]