BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 33274844)

  • 1. Investigation on the Behavior of κ -Carrageenan Hydrogels for Compressive Intra-Vessel Disintegration.
    Wurm F; Pinggera GM; Pham T; Bechtold T
    Macromol Biosci; 2021 Feb; 21(2):e2000348. PubMed ID: 33274844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Swelling of kappa carrageenan hydrogels in simulated body fluid for hypothetical vessel occlusion applications.
    Wurm F; Lerchster N; Pinggera GM; Pham T; Bechtold T
    J Biomater Appl; 2022 Oct; 37(4):588-599. PubMed ID: 35775399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of gelation concentration on cyclic deformation behavior of κ-carrageenan hydrogels.
    Horinaka JI; Takagaki H; Tanaka T; Takigawa T
    Int J Biol Macromol; 2022 Oct; 218():634-638. PubMed ID: 35872317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of whey protein-kappa carrageenan hydrogel properties via enzymatic protein modification.
    Selig MJ; Dar BN; Kierulf A; Ravanfar R; Rizvi SSH; Abbaspourrad A
    Food Funct; 2018 Apr; 9(4):2313-2319. PubMed ID: 29577117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. κ-Carrageenan/Sodium alginate double-network hydrogel with enhanced mechanical properties, anti-swelling, and adsorption capacity.
    Yu F; Cui T; Yang C; Dai X; Ma J
    Chemosphere; 2019 Dec; 237():124417. PubMed ID: 31356999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fucoidan hydrogels induced by κ-carrageenan: Rheological, thermal and structural characterization.
    Wang N; Tian J; Wang L; Song S; Ai C; Janaswamy S; Wen C
    Int J Biol Macromol; 2021 Nov; 191():514-520. PubMed ID: 34563575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of magnetite nanoparticles on the thermorheological properties of carrageenan hydrogels.
    Daniel-da-Silva AL; Lóio R; Lopes-da-Silva JA; Trindade T; Goodfellow BJ; Gil AM
    J Colloid Interface Sci; 2008 Aug; 324(1-2):205-11. PubMed ID: 18495143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of carrageenan molecular structures on electromechanical behaviours of poly(3-hexylthiophene)/carrageenan conductive hydrogels.
    Tanusorn N; Thummarungsan N; Sangwan W; Lerdwijitjarud W; Sirivat A
    Int J Biol Macromol; 2018 Oct; 118(Pt B):2098-2107. PubMed ID: 30009911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Properties of a commercial κ-carrageenan food ingredient and its durable superabsorbent hydrogels.
    Berton SBR; de Jesus GAM; Sabino RM; Monteiro JP; Venter SAS; Bruschi ML; Popat KC; Matsushita M; Martins AF; Bonafé EG
    Carbohydr Res; 2020 Jan; 487():107883. PubMed ID: 31809910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rheology and synergy of κ-carrageenan/locust bean gum/konjac glucomannan gels.
    Brenner T; Wang Z; Achayuthakan P; Nakajima T; Nishinari K
    Carbohydr Polym; 2013 Oct; 98(1):754-60. PubMed ID: 23987409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulating storage stability of binary gel by adjusting the ratios of starch and kappa-carrageenan.
    Liu B; Zhu S; Zhong F; Yokoyama W; Huang D; Li Y
    Carbohydr Polym; 2021 Sep; 268():118264. PubMed ID: 34127213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual Physically Cross-Linked κ-Carrageenan-Based Double Network Hydrogels with Superior Self-Healing Performance for Biomedical Application.
    Deng Y; Huang M; Sun D; Hou Y; Li Y; Dong T; Wang X; Zhang L; Yang W
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):37544-37554. PubMed ID: 30296052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of elasticity on the syneresis properties of κ-carrageenan gels.
    Ako K
    Carbohydr Polym; 2015 Jan; 115():408-14. PubMed ID: 25439912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yield study with the release property of polysaccharide-based physical hydrogels.
    Ako K
    Int J Biol Macromol; 2017 Aug; 101():660-667. PubMed ID: 28359896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and construction of a novel measurement device for mechanical characterization of hydrogels: A case study.
    Shahab S; Kasra M; Dolatshahi-Pirouz A
    PLoS One; 2021; 16(2):e0247727. PubMed ID: 33630967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photocrosslinkable kappa-carrageenan hydrogels for tissue engineering applications.
    Mihaila SM; Gaharwar AK; Reis RL; Marques AP; Gomes ME; Khademhosseini A
    Adv Healthc Mater; 2013 Jun; 2(6):895-907. PubMed ID: 23281344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of soy protein isolate/κ-carrageenan composite hydrogels as a delivery system for hydrophilic compounds: Monascus yellow.
    Zhang Q; Gu L; Su Y; Chang C; Yang Y; Li J
    Int J Biol Macromol; 2021 Mar; 172():281-288. PubMed ID: 33453255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Internally self-assembled thermoreversible gelling emulsions: ISAsomes in methylcellulose, kappa-carrageenan, and mixed hydrogels.
    Tomsic M; Guillot S; Sagalowicz L; Leser ME; Glatter O
    Langmuir; 2009 Aug; 25(16):9525-34. PubMed ID: 19505132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on the friction of κ-carrageenan hydrogels in air and aqueous environments.
    Kozbial A; Li L
    Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():173-9. PubMed ID: 24433901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linear and Nonlinear Rheology of Mixed Polysaccharide Gels. Pt. I. Young's Modulus, Ring Extension and Uniaxial Compression Tests.
    Brenner T; Achayuthakan P; Nishinari K
    J Texture Stud; 2013 Feb; 44(1):66-74. PubMed ID: 35484800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.