These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 33274985)

  • 1. Competition between Ekman Plumes and Vortex Condensates in Rapidly Rotating Thermal Convection.
    Aguirre Guzmán AJ; Madonia M; Cheng JS; Ostilla-Mónico R; Clercx HJH; Kunnen RPJ
    Phys Rev Lett; 2020 Nov; 125(21):214501. PubMed ID: 33274985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Force balance in rapidly rotating Rayleigh-Bénard convection.
    Guzmán AJA; Madonia M; Cheng JS; Ostilla-Mónico R; Clercx HJH; Kunnen RPJ
    J Fluid Mech; 2021 Dec; 928():. PubMed ID: 34671171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plumes and waves in two-dimensional turbulent thermal convection.
    Vincent AP; Yuen DA
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Sep; 60(3):2957-63. PubMed ID: 11970101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upscale energy transfer in three-dimensional rapidly rotating turbulent convection.
    Rubio AM; Julien K; Knobloch E; Weiss JB
    Phys Rev Lett; 2014 Apr; 112(14):144501. PubMed ID: 24765971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prandtl-, Rayleigh-, and Rossby-number dependence of heat transport in turbulent rotating Rayleigh-Bénard convection.
    Zhong JQ; Stevens RJ; Clercx HJ; Verzicco R; Lohse D; Ahlers G
    Phys Rev Lett; 2009 Jan; 102(4):044502. PubMed ID: 19257426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vortex statistics in turbulent rotating convection.
    Kunnen RP; Clercx HJ; Geurts BJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036306. PubMed ID: 21230170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Turbulent superstructures in Rayleigh-Bénard convection.
    Pandey A; Scheel JD; Schumacher J
    Nat Commun; 2018 May; 9(1):2118. PubMed ID: 29844392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directional change of tracer trajectories in rotating Rayleigh-Bénard convection.
    Alards KMJ; Rajaei H; Kunnen RPJ; Toschi F; Clercx HJH
    Phys Rev E; 2018 Jun; 97(6-1):063105. PubMed ID: 30011587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat transport in the geostrophic regime of rotating Rayleigh-Bénard convection.
    Ecke RE; Niemela JJ
    Phys Rev Lett; 2014 Sep; 113(11):114301. PubMed ID: 25259983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal evidence for Taylor columns in turbulent rotating Rayleigh-Bénard convection.
    King EM; Aurnou JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016313. PubMed ID: 22400664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Approaching the asymptotic regime of rapidly rotating convection: boundary layers versus interior dynamics.
    Stellmach S; Lischper M; Julien K; Vasil G; Cheng JS; Ribeiro A; King EM; Aurnou JM
    Phys Rev Lett; 2014 Dec; 113(25):254501. PubMed ID: 25554884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Statistics of velocity and temperature fluctuations in two-dimensional Rayleigh-Bénard convection.
    Zhang Y; Huang YX; Jiang N; Liu YL; Lu ZM; Qiu X; Zhou Q
    Phys Rev E; 2017 Aug; 96(2-1):023105. PubMed ID: 28950509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced enstrophy generation for turbulent convection in low-Prandtl-number fluids.
    Schumacher J; Götzfried P; Scheel JD
    Proc Natl Acad Sci U S A; 2015 Aug; 112(31):9530-5. PubMed ID: 26195793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Velocity and acceleration statistics in rapidly rotating Rayleigh-Bénard convection.
    Rajaei H; Alards KMJ; Kunnen RPJ; Clercx HJH
    J Fluid Mech; 2018 Dec; 857():374-397. PubMed ID: 30410188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boundary Zonal Flow in Rotating Turbulent Rayleigh-Bénard Convection.
    Zhang X; van Gils DPM; Horn S; Wedi M; Zwirner L; Ahlers G; Ecke RE; Weiss S; Bodenschatz E; Shishkina O
    Phys Rev Lett; 2020 Feb; 124(8):084505. PubMed ID: 32167333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat transport in rotating convection without Ekman layers.
    Schmitz S; Tilgner A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 2):015305. PubMed ID: 19658763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal boundary layer profiles in turbulent Rayleigh-Bénard convection in a cylindrical sample.
    Stevens RJ; Zhou Q; Grossmann S; Verzicco R; Xia KQ; Lohse D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):027301. PubMed ID: 22463362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of Large-Scale Winds in Horizontally Anisotropic Convection.
    von Hardenberg J; Goluskin D; Provenzale A; Spiegel EA
    Phys Rev Lett; 2015 Sep; 115(13):134501. PubMed ID: 26451558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical Prandtl Number for Heat Transfer Enhancement in Rotating Convection.
    Anas M; Joshi P
    Phys Rev Lett; 2024 Jan; 132(3):034001. PubMed ID: 38307050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transition to the Ultimate Regime in Two-Dimensional Rayleigh-Bénard Convection.
    Zhu X; Mathai V; Stevens RJAM; Verzicco R; Lohse D
    Phys Rev Lett; 2018 Apr; 120(14):144502. PubMed ID: 29694143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.