These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 3327517)

  • 21. Phosphorylation determines the binding of microtubule-associated protein 2 (MAP2) to microtubules in living cells.
    Brugg B; Matus A
    J Cell Biol; 1991 Aug; 114(4):735-43. PubMed ID: 1907976
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Changes in levels of microtubule-associated proteins in relation to the outgrowth of neurites from PC12D cells, a forskolin- and nerve growth factor-responsive subline of PC12 pheochromocytoma cells.
    Sano M; Katoh-Semba R; Kitajima S; Sato C
    Brain Res; 1990 Mar; 510(2):269-76. PubMed ID: 2331602
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deficient nucleation during co-polymerization of mammalian MAP2 and tobacco tubulin.
    Hugdahl JD; Morejohn LC
    Biochem Mol Biol Int; 1994 Sep; 34(2):375-84. PubMed ID: 7849649
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Developmental regulation of microtubule-associated protein 2 expression in regions of mouse brain.
    Crandall JE; Fischer I
    J Neurochem; 1989 Dec; 53(6):1910-7. PubMed ID: 2809602
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Age-dependent organotypic expression of microtubule-associated proteins (MAP1, MAP2, and MAP5) in rat brain.
    Chauhan N; Siegel G
    Neurochem Res; 1997 Jun; 22(6):713-9. PubMed ID: 9178955
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Age-related changes in activities and localizations of cathepsins D, E, B, and L in the rat brain tissues.
    Nakanishi H; Tominaga K; Amano T; Hirotsu I; Inoue T; Yamamoto K
    Exp Neurol; 1994 Mar; 126(1):119-28. PubMed ID: 8157122
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microtubule-associated protein 2 (MAP2) in Purkinje cell dendrites: evidence that factors other than binding to microtubules are involved in determining its cytoplasmic distribution.
    Matus A; Delhaye-Bouchaud N; Mariani J
    J Comp Neurol; 1990 Jul; 297(3):435-40. PubMed ID: 2398141
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential association of the different brain microtubule proteins in different in vitro assembly conditions.
    Díez JC; de la Torre J; Avila J
    Biochim Biophys Acta; 1985 Jan; 838(1):32-8. PubMed ID: 3917690
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Changes in brain protease activity in aging.
    Benuck M; Banay-Schwartz M; DeGuzman T; Lajtha A
    J Neurochem; 1996 Nov; 67(5):2019-29. PubMed ID: 8863509
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Morphofunctional features of microtubule ultrastructure and MAP2 protein phosphorylation in hippocampal neurons of rats with predisposition to audiogenic epilepsy].
    Bezgina EN; Moshkov DA; Echikov SN; Savina TA; Kalemenev SV; Morenkov ED; Shchipakina TG
    Tsitologiia; 2003; 45(10):1005-12. PubMed ID: 14989172
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differences in the cellular distributions of two microtubule-associated proteins, MAP1 and MAP2, in rat brain.
    Huber G; Matus A
    J Neurosci; 1984 Jan; 4(1):151-60. PubMed ID: 6198491
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cathepsin D from the hepatopancreas of the cuttlefish (Sepia officinalis): purification and characterization.
    Balti R; Hmidet N; Jellouli K; Nedjar-Arroume N; Guillochon D; Nasri M
    J Agric Food Chem; 2010 Oct; 58(19):10623-30. PubMed ID: 20843039
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Isolation, and catalytic and immunochemical properties of cathepsin D-like acid proteinase from rat erythrocytes.
    Takeda M; Ueno E; Kato Y; Yamamoto K
    J Biochem; 1986 Nov; 100(5):1269-77. PubMed ID: 3546279
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heterogeneity of microtubule-associated protein 2 during rat brain development.
    Binder LI; Frankfurter A; Kim H; Caceres A; Payne MR; Rebhun LI
    Proc Natl Acad Sci U S A; 1984 Sep; 81(17):5613-7. PubMed ID: 6591209
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Limited proteolysis of rabbit cardiac procathepsin D in a cell-free system.
    Smarel AM; Worobec SW; Ferguson AG; Decker RS; Lesch M
    Am J Physiol; 1986 Apr; 250(4 Pt 1):C589-96. PubMed ID: 3963172
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ATP-stimulated degradation of oxidatively modified superoxide dismutase by cathepsin D in cardiac tissue extracts.
    Strack PR; Waxman L; Fagan JM
    Biochem Biophys Res Commun; 1996 Feb; 219(2):348-53. PubMed ID: 8604990
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Limited proteolytic processing of the mature form of cathepsin D in human and mouse brain: postmortem stability of enzyme structure and activity.
    Compaine A; Schein JD; Tabb JS; Mohan PS; Nixon RA
    Neurochem Int; 1995; 27(4-5):385-96. PubMed ID: 8845739
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polymorphism of tubulin oligomers in the presence of microtubule-associated proteins. Implications in microtubule assembly.
    Carlier MF; Simon C; Pantaloni D
    Biochemistry; 1984 Mar; 23(7):1582-90. PubMed ID: 6722111
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Purification and characterization of putative endothelin converting enzyme in bovine adrenal medulla: evidence for a cathepsin D-like enzyme.
    Sawamura T; Kimura S; Shinmi O; Sugita Y; Yanagisawa M; Goto K; Masaki T
    Biochem Biophys Res Commun; 1990 May; 168(3):1230-6. PubMed ID: 2189405
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Heterogeneity of microtubule-associated proteins and brain development.
    Francon J; Lennon AM; Fellous A; Mareck A; Pierre M; Nunez J
    Eur J Biochem; 1982 Dec; 129(2):465-71. PubMed ID: 7151809
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.