These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 3327522)

  • 1. Kinetic mechanism of DNA polymerase I (Klenow).
    Kuchta RD; Mizrahi V; Benkovic PA; Johnson KA; Benkovic SJ
    Biochemistry; 1987 Dec; 26(25):8410-7. PubMed ID: 3327522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic mechanism of DNA polymerase I (Klenow fragment): identification of a second conformational change and evaluation of the internal equilibrium constant.
    Dahlberg ME; Benkovic SJ
    Biochemistry; 1991 May; 30(20):4835-43. PubMed ID: 1645180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Minimal kinetic mechanism for misincorporation by DNA polymerase I (Klenow fragment).
    Eger BT; Benkovic SJ
    Biochemistry; 1992 Sep; 31(38):9227-36. PubMed ID: 1327109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The nucleotide analog 2-aminopurine as a spectroscopic probe of nucleotide incorporation by the Klenow fragment of Escherichia coli polymerase I and bacteriophage T4 DNA polymerase.
    Frey MW; Sowers LC; Millar DP; Benkovic SJ
    Biochemistry; 1995 Jul; 34(28):9185-92. PubMed ID: 7619819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic mechanism whereby DNA polymerase I (Klenow) replicates DNA with high fidelity.
    Kuchta RD; Benkovic P; Benkovic SJ
    Biochemistry; 1988 Sep; 27(18):6716-25. PubMed ID: 3058205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of DNA replication fidelity for three mutants of DNA polymerase I: Klenow fragment KF(exo+), KF(polA5), and KF(exo-).
    Eger BT; Kuchta RD; Carroll SS; Benkovic PA; Dahlberg ME; Joyce CM; Benkovic SJ
    Biochemistry; 1991 Feb; 30(5):1441-8. PubMed ID: 1991125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic analysis of nucleotide incorporation and misincorporation by Klenow fragment of Escherichia coli DNA polymerase I.
    Benkovic SJ; Cameron CE
    Methods Enzymol; 1995; 262():257-69. PubMed ID: 8594352
    [No Abstract]   [Full Text] [Related]  

  • 8. Steady-state and pre-steady-state kinetic analysis of dNTP insertion opposite 8-oxo-7,8-dihydroguanine by Escherichia coli polymerases I exo- and II exo-.
    Lowe LG; Guengerich FP
    Biochemistry; 1996 Jul; 35(30):9840-9. PubMed ID: 8703958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct complexes of DNA polymerase I (Klenow fragment) for base and sugar discrimination during nucleotide substrate selection.
    Garalde DR; Simon CA; Dahl JM; Wang H; Akeson M; Lieberman KR
    J Biol Chem; 2011 Apr; 286(16):14480-92. PubMed ID: 21362617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific nucleotide binding and rebinding to individual DNA polymerase complexes captured on a nanopore.
    Hurt N; Wang H; Akeson M; Lieberman KR
    J Am Chem Soc; 2009 Mar; 131(10):3772-8. PubMed ID: 19275265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Interaction of dNTP-binding sites of human DNA polymerase alpha and The Klenow fragment of Escherichia coli DNA polymerase I with nucleotides, pyrophosphate and their analogs].
    NevinskiÄ­ GA; Potapova IA; Tarusova NB; Khalabuda OV; Khomov VV
    Mol Biol (Mosk); 1990; 24(1):104-16. PubMed ID: 2161489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [DNA polymerase I, Klenow fragment of Escherichia coli: hydrolysis and pyrophosphorolysis of DNA containing phosphothioate groups].
    Rozovskaia TA; Minasian ShKh; Kukhanova MK; KraevskiÄ­ AA; Chidzhavadze ZG
    Mol Biol (Mosk); 1989; 23(2):449-62. PubMed ID: 2671672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rate-limiting steps in the DNA polymerase I reaction pathway.
    Mizrahi V; Henrie RN; Marlier JF; Johnson KA; Benkovic SJ
    Biochemistry; 1985 Jul; 24(15):4010-8. PubMed ID: 3902078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of DNA polymerase I: exonuclease/polymerase activity switch and DNA sequence dependence of pyrophosphorolysis and misincorporation reactions.
    Mizrahi V; Benkovic P; Benkovic SJ
    Proc Natl Acad Sci U S A; 1986 Aug; 83(16):5769-73. PubMed ID: 3016719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mutant of DNA polymerase I (Klenow fragment) with reduced fidelity.
    Carroll SS; Cowart M; Benkovic SJ
    Biochemistry; 1991 Jan; 30(3):804-13. PubMed ID: 1899034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic analysis of the coding properties of O6-methylguanine in DNA: the crucial role of the conformation of the phosphodiester bond.
    Tan HB; Swann PF; Chance EM
    Biochemistry; 1994 May; 33(17):5335-46. PubMed ID: 8172907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How E. coli DNA polymerase I (Klenow fragment) distinguishes between deoxy- and dideoxynucleotides.
    Astatke M; Grindley ND; Joyce CM
    J Mol Biol; 1998 Apr; 278(1):147-65. PubMed ID: 9571040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elementary steps in the DNA polymerase I reaction pathway.
    Bryant FR; Johnson KA; Benkovic SJ
    Biochemistry; 1983 Jul; 22(15):3537-46. PubMed ID: 6351905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of dNTP, pyrophosphate and their analogs with the dNTP-binding sites of E. coli DNA polymerase I Klenow fragment and human DNA polymerase alpha.
    Potapova IA; Nevinsky GA; Veniaminova AG; Khomov VV; Lavrik OI
    FEBS Lett; 1990 Dec; 277(1-2):194-6. PubMed ID: 2176614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pre-steady-state kinetic analysis of processive DNA replication including complete characterization of an exonuclease-deficient mutant.
    Patel SS; Wong I; Johnson KA
    Biochemistry; 1991 Jan; 30(2):511-25. PubMed ID: 1846298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.