BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 33275419)

  • 1. Incorporating a Thiophosphate Modification into a Common RNA Tetraloop Motif Causes an Unanticipated Stability Boost.
    Pallan PS; Lybrand TP; Schlegel MK; Harp JM; Jahns H; Manoharan M; Egli M
    Biochemistry; 2020 Dec; 59(49):4627-4637. PubMed ID: 33275419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Common and distinctive features of GNRA tetraloops based on a GUAA tetraloop structure at 1.4 A resolution.
    Correll CC; Swinger K
    RNA; 2003 Mar; 9(3):355-63. PubMed ID: 12592009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Portability of the GN(R)A hairpin loop motif between RNA and DNA.
    Blose JM; Lloyd KP; Bevilacqua PC
    Biochemistry; 2009 Sep; 48(37):8787-94. PubMed ID: 19681609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Dispersion and Polarization Interactions Achieved through Dithiophosphate Group Incorporation Yield a Dramatic Binding Affinity Increase for an RNA Aptamer-Thrombin Complex.
    Egli M; Lybrand TP
    J Am Chem Soc; 2019 Mar; 141(10):4445-4452. PubMed ID: 30794399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and evolutionary classification of G/U wobble basepairs in the ribosome.
    Mokdad A; Krasovska MV; Sponer J; Leontis NB
    Nucleic Acids Res; 2006; 34(5):1326-41. PubMed ID: 16522645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiscale Modeling of Phosphate···π Contacts in RNA U-Turns Exposes Differences between Quantum-Chemical and AMBER Force Field Descriptions.
    Mráziková K; Kruse H; Mlýnský V; Auffinger P; Šponer J
    J Chem Inf Model; 2022 Dec; 62(23):6182-6200. PubMed ID: 36454943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An RNA folding motif: GNRA tetraloop-receptor interactions.
    Fiore JL; Nesbitt DJ
    Q Rev Biophys; 2013 Aug; 46(3):223-64. PubMed ID: 23915736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recognition modes of RNA tetraloops and tetraloop-like motifs by RNA-binding proteins.
    Thapar R; Denmon AP; Nikonowicz EP
    Wiley Interdiscip Rev RNA; 2014; 5(1):49-67. PubMed ID: 24124096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The common and the distinctive features of the bulged-G motif based on a 1.04 A resolution RNA structure.
    Correll CC; Beneken J; Plantinga MJ; Lubbers M; Chan YL
    Nucleic Acids Res; 2003 Dec; 31(23):6806-18. PubMed ID: 14627814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling RNA tertiary structure motifs by graph-grammars.
    St-Onge K; Thibault P; Hamel S; Major F
    Nucleic Acids Res; 2007; 35(5):1726-36. PubMed ID: 17317683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linkage between substrate recognition and catalysis during cleavage of sarcin/ricin loop RNA by restrictocin.
    Korennykh AV; Plantinga MJ; Correll CC; Piccirilli JA
    Biochemistry; 2007 Nov; 46(44):12744-56. PubMed ID: 17929942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The GAAA tetraloop-receptor interaction contributes differentially to folding thermodynamics and kinetics for the P4-P6 RNA domain.
    Young BT; Silverman SK
    Biochemistry; 2002 Oct; 41(41):12271-6. PubMed ID: 12369814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model for an RNA tertiary interaction from the structure of an intermolecular complex between a GAAA tetraloop and an RNA helix.
    Pley HW; Flaherty KM; McKay DB
    Nature; 1994 Nov; 372(6501):111-3. PubMed ID: 7526219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evoking picomolar binding in RNA by a single phosphorodithioate linkage.
    Abeydeera ND; Egli M; Cox N; Mercier K; Conde JN; Pallan PS; Mizurini DM; Sierant M; Hibti FE; Hassell T; Wang T; Liu FW; Liu HM; Martinez C; Sood AK; Lybrand TP; Frydman C; Monteiro RQ; Gomer RH; Nawrot B; Yang X
    Nucleic Acids Res; 2016 Sep; 44(17):8052-64. PubMed ID: 27566147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational adaptation of UNCG loops upon crowding.
    Meyer M; Walbott H; Oliéric V; Kondo J; Costa M; Masquida B
    RNA; 2019 Nov; 25(11):1522-1531. PubMed ID: 31427457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting U-turns in ribosomal RNA with comparative sequence analysis.
    Gutell RR; Cannone JJ; Konings D; Gautheret D
    J Mol Biol; 2000 Jul; 300(4):791-803. PubMed ID: 10891269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive features of natural and in vitro selected GNRA tetraloop-binding receptors.
    Geary C; Baudrey S; Jaeger L
    Nucleic Acids Res; 2008 Mar; 36(4):1138-52. PubMed ID: 18158305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The 3D arrangement of the 23 S and 5 S rRNA in the Escherichia coli 50 S ribosomal subunit based on a cryo-electron microscopic reconstruction at 7.5 A resolution.
    Mueller F; Sommer I; Baranov P; Matadeen R; Stoldt M; Wöhnert J; Görlach M; van Heel M; Brimacombe R
    J Mol Biol; 2000 Apr; 298(1):35-59. PubMed ID: 10756104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of the closing base pair to exceptional stability in RNA tetraloops: roles for molecular mimicry and electrostatic factors.
    Blose JM; Proctor DJ; Veeraraghavan N; Misra VK; Bevilacqua PC
    J Am Chem Soc; 2009 Jun; 131(24):8474-84. PubMed ID: 19476351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A network of heterogeneous hydrogen bonds in GNRA tetraloops.
    Jucker FM; Heus HA; Yip PF; Moors EH; Pardi A
    J Mol Biol; 1996 Dec; 264(5):968-80. PubMed ID: 9000624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.