These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 33275585)
1. Improving the Intelligibility of Speech for Simulated Electric and Acoustic Stimulation Using Fully Convolutional Neural Networks. Wang NY; Wang HS; Wang TW; Fu SW; Lu X; Wang HM; Tsao Y IEEE Trans Neural Syst Rehabil Eng; 2021; 29():184-195. PubMed ID: 33275585 [TBL] [Abstract][Full Text] [Related]
2. A Deep Denoising Autoencoder Approach to Improving the Intelligibility of Vocoded Speech in Cochlear Implant Simulation. Lai YH; Chen F; Wang SS; Lu X; Tsao Y; Lee CH IEEE Trans Biomed Eng; 2017 Jul; 64(7):1568-1578. PubMed ID: 28113304 [TBL] [Abstract][Full Text] [Related]
3. Effects of Additional Low-Pass-Filtered Speech on Listening Effort for Noise-Band-Vocoded Speech in Quiet and in Noise. Pals C; Sarampalis A; van Dijk M; Başkent D Ear Hear; 2019; 40(1):3-17. PubMed ID: 29757801 [TBL] [Abstract][Full Text] [Related]
4. Speech Perception With Combined Electric-Acoustic Stimulation: A Simulation and Model Comparison. Rader T; Adel Y; Fastl H; Baumann U Ear Hear; 2015; 36(6):e314-25. PubMed ID: 25989069 [TBL] [Abstract][Full Text] [Related]
5. Predicting the intelligibility of vocoded speech. Chen F; Loizou PC Ear Hear; 2011; 32(3):331-8. PubMed ID: 21206363 [TBL] [Abstract][Full Text] [Related]
6. Comparing the effects of reverberation and of noise on speech recognition in simulated electric-acoustic listening. Helms Tillery K; Brown CA; Bacon SP J Acoust Soc Am; 2012 Jan; 131(1):416-23. PubMed ID: 22280603 [TBL] [Abstract][Full Text] [Related]
7. A physiologically-inspired model reproducing the speech intelligibility benefit in cochlear implant listeners with residual acoustic hearing. Zamaninezhad L; Hohmann V; Büchner A; Schädler MR; Jürgens T Hear Res; 2017 Feb; 344():50-61. PubMed ID: 27838372 [TBL] [Abstract][Full Text] [Related]
8. Potential Benefits of an Integrated Electric-Acoustic Sound Processor with Children: A Preliminary Report. Wolfe J; Neumann S; Schafer E; Marsh M; Wood M; Baker RS J Am Acad Audiol; 2017 Feb; 28(2):127-140. PubMed ID: 28240980 [TBL] [Abstract][Full Text] [Related]
9. Masking release with changing fundamental frequency: Electric acoustic stimulation resembles normal hearing subjects. Auinger AB; Riss D; Liepins R; Rader T; Keck T; Keintzel T; Kaider A; Baumgartner WD; Gstoettner W; Arnoldner C Hear Res; 2017 Jul; 350():226-234. PubMed ID: 28527538 [TBL] [Abstract][Full Text] [Related]
10. Speech perception in individuals with auditory neuropathy. Zeng FG; Liu S J Speech Lang Hear Res; 2006 Apr; 49(2):367-80. PubMed ID: 16671850 [TBL] [Abstract][Full Text] [Related]
11. Influences of noise-interruption and information-bearing acoustic changes on understanding simulated electric-acoustic speech. Stilp C; Donaldson G; Oh S; Kong YY J Acoust Soc Am; 2016 Nov; 140(5):3971. PubMed ID: 27908030 [TBL] [Abstract][Full Text] [Related]
12. Speech perception with combined electric-acoustic stimulation and bilateral cochlear implants in a multisource noise field. Rader T; Fastl H; Baumann U Ear Hear; 2013; 34(3):324-32. PubMed ID: 23263408 [TBL] [Abstract][Full Text] [Related]
13. An Evaluation of Output Signal to Noise Ratio as a Predictor of Cochlear Implant Speech Intelligibility. Watkins GD; Swanson BA; Suaning GJ Ear Hear; 2018; 39(5):958-968. PubMed ID: 29474218 [TBL] [Abstract][Full Text] [Related]
14. Deep Learning-Based Noise Reduction Approach to Improve Speech Intelligibility for Cochlear Implant Recipients. Lai YH; Tsao Y; Lu X; Chen F; Su YT; Chen KC; Chen YH; Chen LC; Po-Hung Li L; Lee CH Ear Hear; 2018; 39(4):795-809. PubMed ID: 29360687 [TBL] [Abstract][Full Text] [Related]
15. Improved Environment-Aware-Based Noise Reduction System for Cochlear Implant Users Based on a Knowledge Transfer Approach: Development and Usability Study. Li LP; Han JY; Zheng WZ; Huang RJ; Lai YH J Med Internet Res; 2021 Oct; 23(10):e25460. PubMed ID: 34709193 [TBL] [Abstract][Full Text] [Related]
16. Understanding the effect of noise on electrical stimulation sequences in cochlear implants and its impact on speech intelligibility. Qazi OU; van Dijk B; Moonen M; Wouters J Hear Res; 2013 May; 299():79-87. PubMed ID: 23396271 [TBL] [Abstract][Full Text] [Related]
17. A simulation study of harmonics regeneration in noise reduction for electric and acoustic stimulation. Hu Y J Acoust Soc Am; 2010 May; 127(5):3145-53. PubMed ID: 21117763 [TBL] [Abstract][Full Text] [Related]
18. Experimental Investigation of Acoustic Features to Optimize Intelligibility in Cochlear Implants. Henry F; Parsi A; Glavin M; Jones E Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37688009 [TBL] [Abstract][Full Text] [Related]
19. Benefits of bilateral electrical stimulation with the nucleus cochlear implant in adults: 6-month postoperative results. Laszig R; Aschendorff A; Stecker M; Müller-Deile J; Maune S; Dillier N; Weber B; Hey M; Begall K; Lenarz T; Battmer RD; Böhm M; Steffens T; Strutz J; Linder T; Probst R; Allum J; Westhofen M; Doering W Otol Neurotol; 2004 Nov; 25(6):958-68. PubMed ID: 15547426 [TBL] [Abstract][Full Text] [Related]
20. Combined Electric and Acoustic Stimulation With Hearing Preservation: Effect of Cochlear Implant Low-Frequency Cutoff on Speech Understanding and Perceived Listening Difficulty. Gifford RH; Davis TJ; Sunderhaus LW; Menapace C; Buck B; Crosson J; O'Neill L; Beiter A; Segel P Ear Hear; 2017; 38(5):539-553. PubMed ID: 28301392 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]