These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 33275851)

  • 1. Superior Facilitation of an Action Observation Network by Congruent Character Movements in Brain-Computer Interface Action-Observation Games.
    Lim H; Ku J
    Cyberpsychol Behav Soc Netw; 2021 Aug; 24(8):566-572. PubMed ID: 33275851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Brain-Computer Interface-Based Action Observation Game That Enhances Mu Suppression.
    Lim H; Ku J
    IEEE Trans Neural Syst Rehabil Eng; 2018 Dec; 26(12):2290-2296. PubMed ID: 30371380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a flickering action video based steady state visual evoked potential triggered brain computer interface-functional electrical stimulation for a rehabilitative action observation game.
    Son JE; Choi H; Lim H; Ku J
    Technol Health Care; 2020; 28(S1):509-519. PubMed ID: 32364183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beyond passive observation: feedback anticipation and observation activate the mirror system in virtual finger movement control via P300-BCI.
    Syrov N; Yakovlev L; Miroshnikov A; Kaplan A
    Front Hum Neurosci; 2023; 17():1180056. PubMed ID: 37213933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain-computer interface-based action observation combined with peripheral electrical stimulation enhances corticospinal excitability in healthy subjects and stroke patients.
    Kim MG; Lim H; Lee HS; Han IJ; Ku J; Kang YJ
    J Neural Eng; 2022 Jun; 19(3):. PubMed ID: 35675795
    [No Abstract]   [Full Text] [Related]  

  • 6. Attentional State-Dependent Peripheral Electrical Stimulation During Action Observation Enhances Cortical Activations in Stroke Patients.
    Lim H; Jeong CH; Kang YJ; Ku J
    Cyberpsychol Behav Soc Netw; 2023 Jun; 26(6):408-416. PubMed ID: 37083413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motor-related brain activity during action observation: a neural substrate for electrocorticographic brain-computer interfaces after spinal cord injury.
    Collinger JL; Vinjamuri R; Degenhart AD; Weber DJ; Sudre GP; Boninger ML; Tyler-Kabara EC; Wang W
    Front Integr Neurosci; 2014; 8():17. PubMed ID: 24600359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple-command single-frequency SSVEP-based BCI system using flickering action video.
    Lim H; Ku J
    J Neurosci Methods; 2019 Feb; 314():21-27. PubMed ID: 30659844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Online Action Observation-Based Brain-Computer Interface That Enhances Event-Related Desynchronization.
    Zhang X; Hou W; Wu X; Feng S; Chen L
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2605-2614. PubMed ID: 34878977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attentional state-synchronous peripheral electrical stimulation during action observation induced distinct modulation of corticospinal plasticity after stroke.
    Jeong CH; Lim H; Lee J; Lee HS; Ku J; Kang YJ
    Front Neurosci; 2024; 18():1373589. PubMed ID: 38606309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Different Movement Speed Modes on Human Action Observation: An EEG Study.
    Luo TJ; Lv J; Chao F; Zhou C
    Front Neurosci; 2018; 12():219. PubMed ID: 29674949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of the Action Observation-Based Brain-Computer Interface in Stroke Patients and Gaze Metrics Analysis.
    Zhang X; He L; Gao Q; Jiang N
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1370-1379. PubMed ID: 38512735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain oscillatory signatures of motor tasks.
    Ramos-Murguialday A; Birbaumer N
    J Neurophysiol; 2015 Jun; 113(10):3663-82. PubMed ID: 25810484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An EEG-EMG correlation-based brain-computer interface for hand orthosis supported neuro-rehabilitation.
    Chowdhury A; Raza H; Meena YK; Dutta A; Prasad G
    J Neurosci Methods; 2019 Jan; 312():1-11. PubMed ID: 30452976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Agency and responsibility over virtual movements controlled through different paradigms of brain-computer interface.
    Nierula B; Spanlang B; Martini M; Borrell M; Nikulin VV; Sanchez-Vives MV
    J Physiol; 2021 May; 599(9):2419-2434. PubMed ID: 31647122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Activation of the Mirror Neuron System during Action Observation and Action Execution with Mirror Visual Feedback in Stroke: A Systematic Review.
    Zhang JJQ; Fong KNK; Welage N; Liu KPY
    Neural Plast; 2018; 2018():2321045. PubMed ID: 29853839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review of brain-computer interface games and an opinion survey from researchers, developers and users.
    Ahn M; Lee M; Choi J; Jun SC
    Sensors (Basel); 2014 Aug; 14(8):14601-33. PubMed ID: 25116904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cortical activation of neuromuscular electrical stimulation synchronized mirror neuron rehabilitation strategies: an fNIRS study.
    Cui Y; Cong F; Huang F; Zeng M; Yan R
    Front Neurol; 2023; 14():1232436. PubMed ID: 37602262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flickering exercise video produces mirror neuron system (MNS) activation and steady state visually evoked potentials (SSVEPs).
    Lim H; Ku J
    Biomed Eng Lett; 2017 Nov; 7(4):281-286. PubMed ID: 30603177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mirror-neuron system recruitment by action observation: effects of focal brain damage on mu suppression.
    Frenkel-Toledo S; Bentin S; Perry A; Liebermann DG; Soroker N
    Neuroimage; 2014 Feb; 87():127-37. PubMed ID: 24140938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.