These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 33275880)
61. Closed-form density-based framework for automatic detection of cellular morphology changes. Duong T; Goud B; Schauer K Proc Natl Acad Sci U S A; 2012 May; 109(22):8382-7. PubMed ID: 22586080 [TBL] [Abstract][Full Text] [Related]
62. Development of novel derivatives of stilbene and macrocyclic compounds as potent of anti-microtubule factors. Borys F; Tobiasz P; Poterała M; Krawczyk H Biomed Pharmacother; 2021 Jan; 133():110973. PubMed ID: 33378993 [TBL] [Abstract][Full Text] [Related]
63. Megakaryocyte lineage-specific class VI β-tubulin suppresses microtubule dynamics, fragments microtubules, and blocks cell division. Yang H; Ganguly A; Yin S; Cabral F Cytoskeleton (Hoboken); 2011 Mar; 68(3):175-87. PubMed ID: 21309084 [TBL] [Abstract][Full Text] [Related]
64. ELR510444, a novel microtubule disruptor with multiple mechanisms of action. Risinger AL; Westbrook CD; Encinas A; Mülbaier M; Schultes CM; Wawro S; Lewis JD; Janssen B; Giles FJ; Mooberry SL J Pharmacol Exp Ther; 2011 Mar; 336(3):652-60. PubMed ID: 21148249 [TBL] [Abstract][Full Text] [Related]
65. Discovery of novel microtubule stabilizers targeting taxane binding site by applying molecular docking, molecular dynamics simulation, and anticancer activity testing. Zhang H; Qi HZ; Mao J; Zhang HR; Luo QQ; Hu ML; Shen C; Ding L Bioorg Chem; 2022 May; 122():105722. PubMed ID: 35303622 [TBL] [Abstract][Full Text] [Related]
66. 2-Alkoxycarbonyl-3-arylamino-5-substituted thiophenes as a novel class of antimicrotubule agents: Design, synthesis, cell growth and tubulin polymerization inhibition. Romagnoli R; Kimatrai Salvador M; Schiaffino Ortega S; Baraldi PG; Oliva P; Baraldi S; Lopez-Cara LC; Brancale A; Ferla S; Hamel E; Balzarini J; Liekens S; Mattiuzzo E; Basso G; Viola G Eur J Med Chem; 2018 Jan; 143():683-698. PubMed ID: 29220790 [TBL] [Abstract][Full Text] [Related]
67. Development of Novel Bis(indolyl)-hydrazide-Hydrazone Derivatives as Potent Microtubule-Targeting Cytotoxic Agents against A549 Lung Cancer Cells. Das Mukherjee D; Kumar NM; Tantak MP; Das A; Ganguli A; Datta S; Kumar D; Chakrabarti G Biochemistry; 2016 May; 55(21):3020-35. PubMed ID: 27110637 [TBL] [Abstract][Full Text] [Related]
68. Design, synthesis, and biological evaluation of novel combretastatin A-4 thio derivatives as microtubule targeting agents. Stefański T; Mikstacka R; Kurczab R; Dutkiewicz Z; Kucińska M; Murias M; Zielińska-Przyjemska M; Cichocki M; Teubert A; Kaczmarek M; Hogendorf A; Sobiak S Eur J Med Chem; 2018 Jan; 144():797-816. PubMed ID: 29291446 [TBL] [Abstract][Full Text] [Related]
69. Aggregation of SND1 in Stress Granules is Associated with the Microtubule Cytoskeleton During Heat Shock Stimulus. Shao J; Gao F; Zhang B; Zhao M; Zhou Y; He J; Ren L; Yao Z; Yang J; Su C; Gao X Anat Rec (Hoboken); 2017 Dec; 300(12):2192-2199. PubMed ID: 28758359 [TBL] [Abstract][Full Text] [Related]
70. Revisiting microtubule targeting agents: α-Tubulin and the pironetin binding site as unexplored targets for cancer therapeutics. Coulup SK; Georg GI Bioorg Med Chem Lett; 2019 Aug; 29(15):1865-1873. PubMed ID: 31130264 [TBL] [Abstract][Full Text] [Related]
71. 3D motion of vesicles along microtubules helps them to circumvent obstacles in cells. Verdeny-Vilanova I; Wehnekamp F; Mohan N; Sandoval Álvarez Á; Borbely JS; Otterstrom JJ; Lamb DC; Lakadamyali M J Cell Sci; 2017 Jun; 130(11):1904-1916. PubMed ID: 28420672 [TBL] [Abstract][Full Text] [Related]
72. Microtubule-associated proteins control the kinetics of microtubule nucleation. Wieczorek M; Bechstedt S; Chaaban S; Brouhard GJ Nat Cell Biol; 2015 Jul; 17(7):907-16. PubMed ID: 26098575 [TBL] [Abstract][Full Text] [Related]
73. In vivo assay of presynaptic microtubule cytoskeleton dynamics in Drosophila. Yan Y; Broadie K J Neurosci Methods; 2007 May; 162(1-2):198-205. PubMed ID: 17331586 [TBL] [Abstract][Full Text] [Related]
74. Structural comparison of the interaction of tubulin with various ligands affecting microtubule dynamics. Stec-Martyna E; Ponassi M; Miele M; Parodi S; Felli L; Rosano C Curr Cancer Drug Targets; 2012 Jul; 12(6):658-66. PubMed ID: 22385515 [TBL] [Abstract][Full Text] [Related]
75. Cellular studies reveal mechanistic differences between taccalonolide A and paclitaxel. Risinger AL; Mooberry SL Cell Cycle; 2011 Jul; 10(13):2162-71. PubMed ID: 21597323 [TBL] [Abstract][Full Text] [Related]
76. Natural antitubulin agents: importance of 3,4,5-trimethoxyphenyl fragment. Negi AS; Gautam Y; Alam S; Chanda D; Luqman S; Sarkar J; Khan F; Konwar R Bioorg Med Chem; 2015 Feb; 23(3):373-89. PubMed ID: 25564377 [TBL] [Abstract][Full Text] [Related]
77. Disruption of tubulin polymerization and cell proliferation by 1-naphthylarsonic acid. Mahinpour R; Riazi G; Shokrgozar MA; Sarbolouki MN; Ahmadian S; Douraghi M; Hadi Alijanvand H; Azadmanesh K; Heidari M; Naghdi Gheshlaghi Z; Moosavi-Movahedi AA Cell Biol Int; 2012 Apr; 36(4):403-8. PubMed ID: 22214203 [TBL] [Abstract][Full Text] [Related]
78. In vivo dynamics and differential microtubule-binding activities of MAP65 proteins. Van Damme D; Van Poucke K; Boutant E; Ritzenthaler C; Inzé D; Geelen D Plant Physiol; 2004 Dec; 136(4):3956-67. PubMed ID: 15557096 [TBL] [Abstract][Full Text] [Related]
79. A novel synthetic compound exerts effective anti-tumour activity in vivo via the inhibition of tubulin polymerisation in A549 cells. Yan J; Pang Y; Sheng J; Wang Y; Chen J; Hu J; Huang L; Li X Biochem Pharmacol; 2015 Sep; 97(1):51-61. PubMed ID: 26212540 [TBL] [Abstract][Full Text] [Related]
80. Role of cytoskeletal elements in the recruitment of Cx43-GFP and Cx26-YFP into gap junctions. Thomas T; Jordan K; Laird DW Cell Commun Adhes; 2001; 8(4-6):231-6. PubMed ID: 12064594 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]