BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 33275971)

  • 1. Instability of therapeutic proteins - An overview of stresses, stabilization mechanisms and analytical techniques involved in lyophilized proteins.
    Butreddy A; Janga KY; Ajjarapu S; Sarabu S; Dudhipala N
    Int J Biol Macromol; 2021 Jan; 167():309-325. PubMed ID: 33275971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applications of Freezing and Freeze-Drying in Pharmaceutical Formulations.
    Izutsu KI
    Adv Exp Med Biol; 2018; 1081():371-383. PubMed ID: 30288720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lyophilization and development of solid protein pharmaceuticals.
    Wang W
    Int J Pharm; 2000 Aug; 203(1-2):1-60. PubMed ID: 10967427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing the Formulation and Lyophilization Process for a Fragment Antigen Binding (Fab) Protein Using Solid-State Hydrogen-Deuterium Exchange Mass Spectrometry (ssHDX-MS).
    Kumar L; Chandrababu KB; Balakrishnan SM; Allmendinger A; Walters B; Zarraga IE; Chang DP; Nayak P; Topp EM
    Mol Pharm; 2019 Nov; 16(11):4485-4495. PubMed ID: 31568722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thiol-disulfide exchange in peptides derived from human growth hormone during lyophilization and storage in the solid state.
    Chandrasekhar S; Topp EM
    J Pharm Sci; 2015 Apr; 104(4):1291-302. PubMed ID: 25631887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integrated process analytical technology (PAT) approach to monitoring the effect of supercooling on lyophilization product and process parameters of model monoclonal antibody formulations.
    Awotwe Otoo D; Agarabi C; Khan MA
    J Pharm Sci; 2014 Jul; 103(7):2042-2052. PubMed ID: 24840395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Product and process understanding to relate the effect of freezing method on glycation and aggregation of lyophilized monoclonal antibody formulations.
    Awotwe-Otoo D; Agarabi C; Read EK; Lute S; Brorson KA; Khan MA
    Int J Pharm; 2015 Jul; 490(1-2):341-50. PubMed ID: 25835267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fundamentals of freeze-drying.
    Nail SL; Jiang S; Chongprasert S; Knopp SA
    Pharm Biotechnol; 2002; 14():281-360. PubMed ID: 12189727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Freeze-drying of live virus vaccines: A review.
    Hansen LJJ; Daoussi R; Vervaet C; Remon JP; De Beer TRM
    Vaccine; 2015 Oct; 33(42):5507-5519. PubMed ID: 26364685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Impact of Formulation Composition and Process Settings of Traditional Batch Versus Continuous Freeze-Drying On Protein Aggregation.
    Vanbillemont B; Carpenter JF; Probst C; De Beer T
    J Pharm Sci; 2020 Nov; 109(11):3308-3318. PubMed ID: 32739274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein stability during freezing: separation of stresses and mechanisms of protein stabilization.
    Bhatnagar BS; Bogner RH; Pikal MJ
    Pharm Dev Technol; 2007; 12(5):505-23. PubMed ID: 17963151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of critical process and formulation parameters affecting in-process stability of lactate dehydrogenase during the secondary drying stage of lyophilization: a mini freeze dryer study.
    Luthra S; Obert JP; Kalonia DS; Pikal MJ
    J Pharm Sci; 2007 Sep; 96(9):2242-50. PubMed ID: 17621675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of stable lyophilized protein drug products.
    Remmele RL; Krishnan S; Callahan WJ
    Curr Pharm Biotechnol; 2012 Mar; 13(3):471-96. PubMed ID: 22283723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein quantity on the air-solid interface determines degradation rates of human growth hormone in lyophilized samples.
    Xu Y; Grobelny P; Von Allmen A; Knudson K; Pikal M; Carpenter JF; Randolph TW
    J Pharm Sci; 2014 May; 103(5):1356-66. PubMed ID: 24623139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of nanocapsules stabilization by amorphous excipients during freeze-drying and storage.
    Abdelwahed W; Degobert G; Fessi H
    Eur J Pharm Biopharm; 2006 Jun; 63(2):87-94. PubMed ID: 16621490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Storage and Lyophilization of Pure Proteins.
    Ó'Fágáin C; Colliton K
    Methods Mol Biol; 2017; 1485():159-190. PubMed ID: 27730553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Freeze-drying of proteins: some emerging concerns.
    Roy I; Gupta MN
    Biotechnol Appl Biochem; 2004 Apr; 39(Pt 2):165-77. PubMed ID: 15032737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface denaturation at solid-void interface--a possible pathway by which opalescent particulates form during the storage of lyophilized tissue-type plasminogen activator at high temperatures.
    Hsu CC; Nguyen HM; Yeung DA; Brooks DA; Koe GS; Bewley TA; Pearlman R
    Pharm Res; 1995 Jan; 12(1):69-77. PubMed ID: 7724490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arginine as an Excipient for Protein Freeze-Drying: A Mini Review.
    Stärtzel P
    J Pharm Sci; 2018 Apr; 107(4):960-967. PubMed ID: 29183741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A specific molar ratio of stabilizer to protein is required for storage stability of a lyophilized monoclonal antibody.
    Cleland JL; Lam X; Kendrick B; Yang J; Yang TH; Overcashier D; Brooks D; Hsu C; Carpenter JF
    J Pharm Sci; 2001 Mar; 90(3):310-21. PubMed ID: 11170024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.