These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 33276008)

  • 1. Global gene expression analysis of the Myxococcus xanthus developmental time course.
    Sharma G; Yao AI; Smaldone GT; Liang J; Long M; Facciotti MT; Singer M
    Genomics; 2021 Jan; 113(1 Pt 1):120-134. PubMed ID: 33276008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global transcriptome analysis of spore formation in Myxococcus xanthus reveals a locus necessary for cell differentiation.
    Müller FD; Treuner-Lange A; Heider J; Huntley SM; Higgs PI
    BMC Genomics; 2010 Apr; 11():264. PubMed ID: 20420673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The enhancer binding protein Nla6 regulates developmental genes that are important for Myxococcus xanthus sporulation.
    Giglio KM; Zhu C; Klunder C; Kummer S; Garza AG
    J Bacteriol; 2015 Apr; 197(7):1276-87. PubMed ID: 25645554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome dynamics of the
    Muñoz-Dorado J; Moraleda-Muñoz A; Marcos-Torres FJ; Contreras-Moreno FJ; Martin-Cuadrado AB; Schrader JM; Higgs PI; Pérez J
    Elife; 2019 Oct; 8():. PubMed ID: 31609203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth of Myxococcus xanthus in continuous-flow-cell bioreactors as a method for studying development.
    Smaldone GT; Jin Y; Whitfield DL; Mu AY; Wong EC; Wuertz S; Singer M
    Appl Environ Microbiol; 2014 Apr; 80(8):2461-7. PubMed ID: 24509931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptomic analysis of the Myxococcus xanthus FruA regulon, and comparative developmental transcriptomic analysis of two fruiting body forming species, Myxococcus xanthus and Myxococcus stipitatus.
    McLoon AL; Boeck ME; Bruckskotten M; Keyel AC; Søgaard-Andersen L
    BMC Genomics; 2021 Nov; 22(1):784. PubMed ID: 34724903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peripheral rods: a specialized developmental cell type in Myxococcus xanthus.
    Whitfield DL; Sharma G; Smaldone GT; Singer M
    Genomics; 2020 Mar; 112(2):1588-1597. PubMed ID: 31605730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering Pseudochelin Production in Myxococcus xanthus.
    Korp J; Winand L; Sester A; Nett M
    Appl Environ Microbiol; 2018 Nov; 84(22):. PubMed ID: 30217842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spontaneous Reversions of an Evolutionary Trait Loss Reveal Regulators of a Small RNA That Controls Multicellular Development in Myxobacteria.
    Yu YN; Kleiner M; Velicer GJ
    J Bacteriol; 2016 Dec; 198(23):3142-3151. PubMed ID: 27621281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whole transcriptome analysis and gene deletion to understand the chloramphenicol resistance mechanism and develop a screening method for homologous recombination in Myxococcus xanthus.
    Yang YJ; Singh RP; Lan X; Zhang CS; Sheng DH; Li YQ
    Microb Cell Fact; 2019 Jul; 18(1):123. PubMed ID: 31291955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional changes when Myxococcus xanthus preys on Escherichia coli suggest myxobacterial predators are constitutively toxic but regulate their feeding.
    Livingstone PG; Millard AD; Swain MT; Whitworth DE
    Microb Genom; 2018 Feb; 4(2):. PubMed ID: 29345219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A survey of non-coding RNAs in the social and predatory myxobacterium
    Whitworth DE; Swain MT
    Mol Omics; 2020 Oct; 16(5):492-502. PubMed ID: 32780046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the Exopolysaccharide Biosynthesis Pathway in Myxococcus xanthus.
    Pérez-Burgos M; García-Romero I; Jung J; Schander E; Valvano MA; Søgaard-Andersen L
    J Bacteriol; 2020 Sep; 202(19):. PubMed ID: 32778557
    [No Abstract]   [Full Text] [Related]  

  • 14. In vitro transcription of Myxococcus xanthus genes with RNA polymerase containing sigmaA, the major sigma factor in growing cells.
    Biran D; Kroos L
    Mol Microbiol; 1997 Aug; 25(3):463-72. PubMed ID: 9302009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemosensory pathways, motility and development in Myxococcus xanthus.
    Zusman DR; Scott AE; Yang Z; Kirby JR
    Nat Rev Microbiol; 2007 Nov; 5(11):862-72. PubMed ID: 17922045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new sigma factor, SigD, essential for stationary phase is also required for multicellular differentiation in Myxococcus xanthus.
    Ueki T; Inouye S
    Genes Cells; 1998 Jun; 3(6):371-85. PubMed ID: 9734783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel regulation on developmental gene expression of fruiting body formation in Myxobacteria.
    Ueki T; Inouye S
    Appl Microbiol Biotechnol; 2006 Aug; 72(1):21-29. PubMed ID: 16791590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of sigmaD in regulating genes and signals during Myxococcus xanthus development.
    Viswanathan P; Singer M; Kroos L
    J Bacteriol; 2006 May; 188(9):3246-56. PubMed ID: 16621817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of sensory complexity recorded in a myxobacterial genome.
    Goldman BS; Nierman WC; Kaiser D; Slater SC; Durkin AS; Eisen JA; Ronning CM; Barbazuk WB; Blanchard M; Field C; Halling C; Hinkle G; Iartchuk O; Kim HS; Mackenzie C; Madupu R; Miller N; Shvartsbeyn A; Sullivan SA; Vaudin M; Wiegand R; Kaplan HB
    Proc Natl Acad Sci U S A; 2006 Oct; 103(41):15200-5. PubMed ID: 17015832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of phase variation in the resistance of Myxococcus xanthus fruiting bodies to Caenorhabditis elegans predation.
    Dahl JL; Ulrich CH; Kroft TL
    J Bacteriol; 2011 Oct; 193(19):5081-9. PubMed ID: 21821771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.