These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

423 related articles for article (PubMed ID: 33276025)

  • 1. Peptides that immunoactivate the tumor microenvironment.
    Furukawa N; Popel AS
    Biochim Biophys Acta Rev Cancer; 2021 Jan; 1875(1):188486. PubMed ID: 33276025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential applications of nanoparticles for tumor microenvironment remodeling to ameliorate cancer immunotherapy.
    Bai Y; Wang Y; Zhang X; Fu J; Xing X; Wang C; Gao L; Liu Y; Shi L
    Int J Pharm; 2019 Oct; 570():118636. PubMed ID: 31446027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunomodulatory nanoparticles activate cytotoxic T cells for enhancement of the effect of cancer immunotherapy.
    Wells K; Liu T; Zhu L; Yang L
    Nanoscale; 2024 Oct; 16(38):17699-17722. PubMed ID: 39257225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing Tumor Microenvironment for Cancer Immunotherapy: β-Glucan-Based Nanoparticles.
    Zhang M; Kim JA; Huang AY
    Front Immunol; 2018; 9():341. PubMed ID: 29535722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining Nanomedicine and Immunotherapy.
    Shi Y; Lammers T
    Acc Chem Res; 2019 Jun; 52(6):1543-1554. PubMed ID: 31120725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunomodulation of the Tumor Microenvironment: Turn Foe Into Friend.
    Locy H; de Mey S; de Mey W; De Ridder M; Thielemans K; Maenhout SK
    Front Immunol; 2018; 9():2909. PubMed ID: 30619273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breast Cancer Treatment Strategies Targeting the Tumor Microenvironment: How to Convert "Cold" Tumors to "Hot" Tumors.
    Yang L; Hu Q; Huang T
    Int J Mol Sci; 2024 Jun; 25(13):. PubMed ID: 39000314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small molecule innate immune modulators in cancer therapy.
    Goswami A; Goyal S; Khurana P; Singh K; Deb B; Kulkarni A
    Front Immunol; 2024; 15():1395655. PubMed ID: 39318624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Nanoparticles for Targeted Remodeling of the Tumor Microenvironment to Improve Cancer Immunotherapy.
    Gao S; Yang D; Fang Y; Lin X; Jin X; Wang Q; Wang X; Ke L; Shi K
    Theranostics; 2019; 9(1):126-151. PubMed ID: 30662558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversal of the immunosuppressive tumor microenvironment by nanoparticle-based activation of immune-associated cells.
    Qi FL; Wang MF; Li BZ; Lu ZF; Nie GJ; Li SP
    Acta Pharmacol Sin; 2020 Jul; 41(7):895-901. PubMed ID: 32467568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoparticle-Based Phototriggered Cancer Immunotherapy and Its Domino Effect in the Tumor Microenvironment.
    Rajendrakumar SK; Uthaman S; Cho CS; Park IK
    Biomacromolecules; 2018 Jun; 19(6):1869-1887. PubMed ID: 29677439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The T-cell-inflamed tumor microenvironment as a paradigm for immunotherapy drug development.
    Olson DJ; Luke JJ
    Immunotherapy; 2019 Feb; 11(3):155-159. PubMed ID: 30730272
    [No Abstract]   [Full Text] [Related]  

  • 13. Immunotherapy of Pediatric Solid Tumors: Treatments at a Crossroads, with an Emphasis on Antibodies.
    Casey DL; Cheung NV
    Cancer Immunol Res; 2020 Feb; 8(2):161-166. PubMed ID: 32015013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cancer Immunotherapy with "Vascular-Immune" Crosstalk as Entry Point: Associated Mechanisms, Therapeutic Drugs and Nano-Delivery Systems.
    Jiang Z; Fang Z; Hong D; Wang X
    Int J Nanomedicine; 2024; 19():7383-7398. PubMed ID: 39050878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DTX@VTX NPs synergy PD-L1 immune checkpoint nanoinhibitor to reshape immunosuppressive tumor microenvironment for enhancing chemo-immunotherapy.
    Zhang R; Wan Y; Lv H; Li F; Lee CS
    J Mater Chem B; 2021 Sep; 9(36):7544-7556. PubMed ID: 34551052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving the efficacy of cancer immunotherapy by host-defence caerin 1.1 and 1.9 peptides.
    Fu Q; Luo Y; Li J; Zhang P; Tang S; Song X; Fu J; Liu M; Mo R; Wei M; Li H; Liu X; Wang T; Ni G
    Hum Vaccin Immunother; 2024 Dec; 20(1):2385654. PubMed ID: 39193797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Harnessing nanomedicine to overcome the immunosuppressive tumor microenvironment.
    Sun B; Hyun H; Li LT; Wang AZ
    Acta Pharmacol Sin; 2020 Jul; 41(7):970-985. PubMed ID: 32424240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of cancer-immunity cycle and tumor microenvironment by nanobiomaterials to enhance tumor immunotherapy.
    Yang J; Zhang C
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2020 Jul; 12(4):e1612. PubMed ID: 32114718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emerging Prospects for Nanoparticle-Enabled Cancer Immunotherapy.
    Buabeid MA; Arafa EA; Murtaza G
    J Immunol Res; 2020; 2020():9624532. PubMed ID: 32377541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tumor immune microenvironment modulation-based drug delivery strategies for cancer immunotherapy.
    Han S; Huang K; Gu Z; Wu J
    Nanoscale; 2020 Jan; 12(2):413-436. PubMed ID: 31829394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.