These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
423 related articles for article (PubMed ID: 33276025)
21. Modulation of tumor microenvironment for immunotherapy: focus on nanomaterial-based strategies. Liu Y; Guo J; Huang L Theranostics; 2020; 10(7):3099-3117. PubMed ID: 32194857 [TBL] [Abstract][Full Text] [Related]
22. Nanoengineered Immune Niches for Reprogramming the Immunosuppressive Tumor Microenvironment and Enhancing Cancer Immunotherapy. Phuengkham H; Ren L; Shin IW; Lim YT Adv Mater; 2019 Aug; 31(34):e1803322. PubMed ID: 30773696 [TBL] [Abstract][Full Text] [Related]
23. Fibroblasts Fuel Immune Escape in the Tumor Microenvironment. De Jaeghere EA; Denys HG; De Wever O Trends Cancer; 2019 Nov; 5(11):704-723. PubMed ID: 31735289 [TBL] [Abstract][Full Text] [Related]
24. Enhancing cancer immunotherapy with photodynamic therapy and nanoparticle: making tumor microenvironment hotter to make immunotherapeutic work better. Thiruppathi J; Vijayan V; Park IK; Lee SE; Rhee JH Front Immunol; 2024; 15():1375767. PubMed ID: 38646546 [TBL] [Abstract][Full Text] [Related]
25. Enhancing cancer immunotherapy through nanotechnology-mediated tumor infiltration and activation of immune cells. Shen H; Sun T; Hoang HH; Burchfield JS; Hamilton GF; Mittendorf EA; Ferrari M Semin Immunol; 2017 Dec; 34():114-122. PubMed ID: 28947107 [TBL] [Abstract][Full Text] [Related]
26. Modulating barriers of tumor microenvironment through nanocarrier systems for improved cancer immunotherapy: a review of current status and future perspective. Lan H; Zhang W; Jin K; Liu Y; Wang Z Drug Deliv; 2020 Dec; 27(1):1248-1262. PubMed ID: 32865029 [TBL] [Abstract][Full Text] [Related]
27. MOF-Derived Oxygen-Deficient Titania-Mediated Photodynamic/Photothermal-Enhanced Immunotherapy for Tumor Treatment. Jiang X; Huang Z; Liu Z; Wang S; Qiu Y; Su X; Wang Y; Xu H ACS Appl Mater Interfaces; 2024 Jul; 16(27):34591-34606. PubMed ID: 38917296 [TBL] [Abstract][Full Text] [Related]
29. The influence of microenvironment on tumor immunotherapy. Zhang J; Shi Z; Xu X; Yu Z; Mi J FEBS J; 2019 Nov; 286(21):4160-4175. PubMed ID: 31365790 [TBL] [Abstract][Full Text] [Related]
30. Tumor-intrinsic signaling pathways: key roles in the regulation of the immunosuppressive tumor microenvironment. Yang L; Li A; Lei Q; Zhang Y J Hematol Oncol; 2019 Nov; 12(1):125. PubMed ID: 31775797 [TBL] [Abstract][Full Text] [Related]
31. Checkpoint blockade-based immunotherapy in the context of tumor microenvironment: Opportunities and challenges. Duan J; Wang Y; Jiao S Cancer Med; 2018 Sep; 7(9):4517-4529. PubMed ID: 30088347 [TBL] [Abstract][Full Text] [Related]
32. Nanomicelle protects the immune activation effects of Paclitaxel and sensitizes tumors to anti-PD-1 Immunotherapy. Yang Q; Shi G; Chen X; Lin Y; Cheng L; Jiang Q; Yan X; Jiang M; Li Y; Zhang H; Wang H; Wang Y; Wang Q; Zhang Y; Liu Y; Su X; Dai L; Tang M; Li J; Zhang L; Qian Z; Yu D; Deng H Theranostics; 2020; 10(18):8382-8399. PubMed ID: 32724476 [TBL] [Abstract][Full Text] [Related]
33. Nanodrug regulates lactic acid metabolism to reprogram the immunosuppressive tumor microenvironment for enhanced cancer immunotherapy. Tian LR; Lin MZ; Zhong HH; Cai YJ; Li B; Xiao ZC; Shuai XT Biomater Sci; 2022 Jul; 10(14):3892-3900. PubMed ID: 35686599 [TBL] [Abstract][Full Text] [Related]
34. Engineering nanoparticles to locally activate T cells in the tumor microenvironment. Wang D; Wang T; Yu H; Feng B; Zhou L; Zhou F; Hou B; Zhang H; Luo M; Li Y Sci Immunol; 2019 Jul; 4(37):. PubMed ID: 31300478 [TBL] [Abstract][Full Text] [Related]
35. Engineering a photosensitizer nanoplatform for amplified photodynamic immunotherapy via tumor microenvironment modulation. Zhou Y; Ren X; Hou Z; Wang N; Jiang Y; Luan Y Nanoscale Horiz; 2021 Feb; 6(2):120-131. PubMed ID: 33206735 [TBL] [Abstract][Full Text] [Related]
36. Harnessing the immune system against cancer: current immunotherapy approaches and therapeutic targets. Kumar AR; Devan AR; Nair B; Vinod BS; Nath LR Mol Biol Rep; 2021 Dec; 48(12):8075-8095. PubMed ID: 34671902 [TBL] [Abstract][Full Text] [Related]
37. Metabolic Regulation of Tregs in Cancer: Opportunities for Immunotherapy. Wang H; Franco F; Ho PC Trends Cancer; 2017 Aug; 3(8):583-592. PubMed ID: 28780935 [TBL] [Abstract][Full Text] [Related]
38. The interaction of NK cells and dendritic cells in the tumor environment: how to enforce NK cell & DC action under immunosuppressive conditions? Jacobs B; Ullrich E Curr Med Chem; 2012; 19(12):1771-9. PubMed ID: 22414086 [TBL] [Abstract][Full Text] [Related]
39. Overcoming Resistance to Combination Radiation-Immunotherapy: A Focus on Contributing Pathways Within the Tumor Microenvironment. Darragh LB; Oweida AJ; Karam SD Front Immunol; 2018; 9():3154. PubMed ID: 30766539 [TBL] [Abstract][Full Text] [Related]
40. Advantages of targeting the tumor immune microenvironment over blocking immune checkpoint in cancer immunotherapy. Tang T; Huang X; Zhang G; Hong Z; Bai X; Liang T Signal Transduct Target Ther; 2021 Feb; 6(1):72. PubMed ID: 33608497 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]