BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

930 related articles for article (PubMed ID: 33276030)

  • 1. CD40-mediated immune cell activation enhances response to anti-PD-1 in murine intrahepatic cholangiocarcinoma.
    Diggs LP; Ruf B; Ma C; Heinrich B; Cui L; Zhang Q; McVey JC; Wabitsch S; Heinrich S; Rosato U; Lai W; Subramanyam V; Longerich T; Loosen SH; Luedde T; Neumann UP; Desar S; Kleiner D; Gores G; Wang XW; Greten TF
    J Hepatol; 2021 May; 74(5):1145-1154. PubMed ID: 33276030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination of gemcitabine and anti-PD-1 antibody enhances the anticancer effect of M1 macrophages and the Th1 response in a murine model of pancreatic cancer liver metastasis.
    Ho TTB; Nasti A; Seki A; Komura T; Inui H; Kozaka T; Kitamura Y; Shiba K; Yamashita T; Yamashita T; Mizukoshi E; Kawaguchi K; Wada T; Honda M; Kaneko S; Sakai Y
    J Immunother Cancer; 2020 Nov; 8(2):. PubMed ID: 33188035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ delivery of iPSC-derived dendritic cells with local radiotherapy generates systemic antitumor immunity and potentiates PD-L1 blockade in preclinical poorly immunogenic tumor models.
    Oba T; Makino K; Kajihara R; Yokoi T; Araki R; Abe M; Minderman H; Chang AE; Odunsi K; Ito F
    J Immunother Cancer; 2021 May; 9(5):. PubMed ID: 34049930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gemcitabine and checkpoint blockade exhibit synergistic anti-tumor effects in a model of murine lung carcinoma.
    Du B; Wen X; Wang Y; Lin M; Lai J
    Int Immunopharmacol; 2020 Sep; 86():106694. PubMed ID: 32570034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anti-PD-1 in Combination With Trametinib Suppresses Tumor Growth and Improves Survival of Intrahepatic Cholangiocarcinoma in Mice.
    Wabitsch S; Tandon M; Ruf B; Zhang Q; McCallen JD; McVey JC; Ma C; Green BL; Diggs LP; Heinrich B; Greten TF
    Cell Mol Gastroenterol Hepatol; 2021; 12(3):1166-1178. PubMed ID: 34033968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A CD40 Agonist and PD-1 Antagonist Antibody Reprogram the Microenvironment of Nonimmunogenic Tumors to Allow T-cell-Mediated Anticancer Activity.
    Ma HS; Poudel B; Torres ER; Sidhom JW; Robinson TM; Christmas B; Scott B; Cruz K; Woolman S; Wall VZ; Armstrong T; Jaffee EM
    Cancer Immunol Res; 2019 Mar; 7(3):428-442. PubMed ID: 30642833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of T-cell-mediated immune response via the PD-1/ PD-L1 axis in cholangiocarcinoma cells.
    Suriyo T; Fuangthong M; Artpradit C; Ungtrakul T; Sricharunrat T; Taha F; Satayavivad J
    Eur J Pharmacol; 2021 Apr; 897():173960. PubMed ID: 33617828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exclusion of T Cells From Pancreatic Carcinomas in Mice Is Regulated by Ly6C(low) F4/80(+) Extratumoral Macrophages.
    Beatty GL; Winograd R; Evans RA; Long KB; Luque SL; Lee JW; Clendenin C; Gladney WL; Knoblock DM; Guirnalda PD; Vonderheide RH
    Gastroenterology; 2015 Jul; 149(1):201-10. PubMed ID: 25888329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CDK4/6 inhibition promotes immune infiltration in ovarian cancer and synergizes with PD-1 blockade in a B cell-dependent manner.
    Zhang QF; Li J; Jiang K; Wang R; Ge JL; Yang H; Liu SJ; Jia LT; Wang L; Chen BL
    Theranostics; 2020; 10(23):10619-10633. PubMed ID: 32929370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATR inhibitor AZD6738 enhances the antitumor activity of radiotherapy and immune checkpoint inhibitors by potentiating the tumor immune microenvironment in hepatocellular carcinoma.
    Sheng H; Huang Y; Xiao Y; Zhu Z; Shen M; Zhou P; Guo Z; Wang J; Wang H; Dai W; Zhang W; Sun J; Cao C
    J Immunother Cancer; 2020 May; 8(1):. PubMed ID: 32461345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction of immunosuppressive tumor microenvironment in cholangiocarcinoma by ex vivo targeting immune checkpoint molecules.
    Zhou G; Sprengers D; Mancham S; Erkens R; Boor PPC; van Beek AA; Doukas M; Noordam L; Campos Carrascosa L; de Ruiter V; van Leeuwen RWF; Polak WG; de Jonge J; Groot Koerkamp B; van Rosmalen B; van Gulik TM; Verheij J; IJzermans JNM; Bruno MJ; Kwekkeboom J
    J Hepatol; 2019 Oct; 71(4):753-762. PubMed ID: 31195061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combination Treatment of the Oral CHK1 Inhibitor, SRA737, and Low-Dose Gemcitabine Enhances the Effect of Programmed Death Ligand 1 Blockade by Modulating the Immune Microenvironment in SCLC.
    Sen T; Della Corte CM; Milutinovic S; Cardnell RJ; Diao L; Ramkumar K; Gay CM; Stewart CA; Fan Y; Shen L; Hansen RJ; Strouse B; Hedrick MP; Hassig CA; Heymach JV; Wang J; Byers LA
    J Thorac Oncol; 2019 Dec; 14(12):2152-2163. PubMed ID: 31470128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antibodies Against Immune Checkpoint Molecules Restore Functions of Tumor-Infiltrating T Cells in Hepatocellular Carcinomas.
    Zhou G; Sprengers D; Boor PPC; Doukas M; Schutz H; Mancham S; Pedroza-Gonzalez A; Polak WG; de Jonge J; Gaspersz M; Dong H; Thielemans K; Pan Q; IJzermans JNM; Bruno MJ; Kwekkeboom J
    Gastroenterology; 2017 Oct; 153(4):1107-1119.e10. PubMed ID: 28648905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disruption of tumour-associated macrophage trafficking by the osteopontin-induced colony-stimulating factor-1 signalling sensitises hepatocellular carcinoma to anti-PD-L1 blockade.
    Zhu Y; Yang J; Xu D; Gao XM; Zhang Z; Hsu JL; Li CW; Lim SO; Sheng YY; Zhang Y; Li JH; Luo Q; Zheng Y; Zhao Y; Lu L; Jia HL; Hung MC; Dong QZ; Qin LX
    Gut; 2019 Sep; 68(9):1653-1666. PubMed ID: 30902885
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Cheng Y; Lemke-Miltner CD; Wongpattaraworakul W; Wang Z; Chan CHF; Salem AK; Weiner GJ; Simons AL
    J Immunother Cancer; 2020 Oct; 8(2):. PubMed ID: 33060147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined Gemcitabine and Immune-Checkpoint Inhibition Conquers Anti-PD-L1 Resistance in Low-Immunogenic Mismatch Repair-Deficient Tumors.
    Salewski I; Henne J; Engster L; Schneider B; Lemcke H; Skorska A; Berlin P; Henze L; Junghanss C; Maletzki C
    Int J Mol Sci; 2021 Jun; 22(11):. PubMed ID: 34206051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The combination of oxaliplatin and anti-PD-1 inhibitor promotes immune cells infiltration and enhances anti-tumor effect of PD-1 blockade in bladder cancer.
    Zhao Z; Liu S; Sun R; Zhu W; Zhang Y; Liu T; Li T; Jiang N; Guo H; Yang R
    Front Immunol; 2023; 14():1085476. PubMed ID: 36960067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitizing tumors to anti-PD-1 therapy by promoting NK and CD8+ T cells via pharmacological activation of FOXO3.
    Chung YM; Khan PP; Wang H; Tsai WB; Qiao Y; Yu B; Larrick JW; Hu MC
    J Immunother Cancer; 2021 Dec; 9(12):. PubMed ID: 34887262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combination of PD-1 Inhibitor and OX40 Agonist Induces Tumor Rejection and Immune Memory in Mouse Models of Pancreatic Cancer.
    Ma Y; Li J; Wang H; Chiu Y; Kingsley CV; Fry D; Delaney SN; Wei SC; Zhang J; Maitra A; Yee C
    Gastroenterology; 2020 Jul; 159(1):306-319.e12. PubMed ID: 32179091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive antitumor immune response stimulated by bio-nanoparticle based vaccine and checkpoint blockade.
    Bai X; Zhou Y; Yokota Y; Matsumoto Y; Zhai B; Maarouf N; Hayashi H; Carlson R; Zhang S; Sousa A; Sun B; Ghanbari H; Dong X; Wands JR
    J Exp Clin Cancer Res; 2022 Apr; 41(1):132. PubMed ID: 35392977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 47.